Gloucester County Vocational-Technical School District
Technology Planning for Digital Learning 2016-2019

Table of Contents

Level I. District
Section 1.01 Vision
Section 1.02 District Infrastructure
Section 1.03 Teaching and Learning within the District
Section 1.04 Transformational Budgeting
Section 1.05 Overview of Schools

Level II. School (repeated for each school identified)
Section 2.01 Infrastructure
Section 2.02 Teaching and Learning
Section 2.03 Technology Plan
 (a) Goals, Objectives, & Strategies
 (b) Indicators for Success
 (c) Action Plan (Activities/Responsibility/Timeline/Resources)
 (d) Professional Learning
 (e) Reflection and Adjustment Plan
 (f) Budget

Appendix
A. Stakeholder Assurance
B. Technology Plan Components Checklist
Level I. District

1.01 – Vision

GCIT will utilize technology to personalize and globalize the 21st century career and technical experience by effectively adapting instructional methods enriched with technology that will engage and support students and staff in meeting curricular needs and to be proficient users of technological skills required of the 21st century work force.

1.02 – District Infrastructure

NJTRAx Technology Readiness completed within the current school year.

Date: 10/21/16 Rating: 5

The Gloucester County Vocational Technical School District has invested in designing, purchasing and implementing a robust, secure, upgradeable and highly available infrastructure. Our current internet pipeline contains a 500 Mb connection which can be upgrade to 1Gb or higher with fiber optic cables already installed on campus. We provide robust internet access and services such as: email, WebEx and Skype for Business to communicate and collaborate with external resources. We maintain logs of internet usage as well as bandwidth utilization to determine needs. We maintain dialog and coordination with appropriate stakeholders on campus for ordering and maintaining technology equipment. The district has multiple layers of software and hardware to manage potential hacks, viruses, etc. There is no Automated Access Control System for Physical Entry into the buildings. There is a security system (alarms), and video surveillance with recording covering the campus. There is digital citizenship support and education available to staff and students. Needed technical solutions to support the educational environment, both academic and administrative are identified and addressed. The district utilizes a shared services agreement for technology. The district also augments support services via inter local agreements. The district is currently undergoing a massive review and upgrade to documentation for all infrastructure and equipment. The Technology Readiness Report is attached. The rating of 5 reflects the scoring of our Adult Regional High School.
1.03 – Teaching and Learning within the District

NJTRAx Digital Learning Readiness completed during current school year. Future Ready District Level Report attached.

Date: 10/11/16
Rating: 5.3 of 10

The Technology Planning Committee, comprised of 16 members from all stakeholder groups (Teachers, Parents, Students, Administration, Technology and the Board of Education) utilized the NJTRAx Survey’s to obtain input and feedback. The survey links were distributed via email and we received the following rate of respondents: 373 Students, 140 Parents / Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator. The percentage of respondents exceeded the required minimums necessary to generate the reports. This information was relevant and provided a means of reflection to assist us in determining our current status. The focus group reviewed the outcomes of the surveys and collaborated through use of digital communications such as Office 365, OneDrive and Yammer. The Digital Learning Readiness Report is attached. The rating of 5.3 reflects the scoring of our Adult Regional High School.

1.04 – Transformational Budgeting

As we move toward expanding our digital learning environment, the district will focus on budgeting through transformational strategies to manage district resources in the areas of leadership, teaching and learning, school design, funding, along with families and communities.

Our goal is to deliberately allocate resources to ensure access to aligned curriculum, instruction, pedagogy, assessment and professional development to improve instructional effectiveness and maximize use of students' time. Establish a clear pathway system to build leader capacity to encourage innovation, improve instruction and leverage available district resources to create personal learning environments.

Incorporating these transformational goals of budgeting toward an expansive digital learning environment will involve the vision of shared-leadership, professional development support, commitment to best practices, allocation of appropriate funds, and money management at both the federal and state level to achieve our pedagogical goal for all learners.

1.05 – Overview of Schools

<table>
<thead>
<tr>
<th>School</th>
<th>Grade Span</th>
<th>NJTRAx PARCC Readiness</th>
<th>NJTRAx Digital Learning Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloucester County Institute of Technology</td>
<td>9-12</td>
<td>10/21/16 9</td>
<td>10/11/16 5.3 of 10</td>
</tr>
</tbody>
</table>
Level II. School (repeated for each school identified)

School Name: Gloucester County Institute of Technology

2.01 – Infrastructure

NJTRAx Technology Readiness report is completed during current school year.

Date: 10/21/16
Rating: 9

2.02 – Teaching and Learning

NJTRAx Digital Learning Readiness report is completed during current school year.

Date: 10/11/16
Rating: 5.3 of 10

The Technology Planning Committee, comprised of 16 members from all stakeholder groups (Teachers, Parents, Students, Administration, Technology and the Board of Education) utilized the NJTRAx Survey's to obtain input and feedback. The survey links were distributed via email and we received the following rate of respondents: 373 Students, 140 Parents / Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator. The percentage of respondents exceeded the required minimums necessary to generate the reports. This information was relevant and provided a means of reflection to assist us in determining our current goals. The focus group reviewed the outcomes of the surveys and collaborated through use of digital communications such as Office 365, OneDrive and Yammer in order to develop goals around Pedagogical changes or strategies in line with Universal Design for Learning and Standards 8.0 (8.1 & 8.2). The Technology Readiness and Digital Learning Readiness Reports are attached.
2.03 – Technology Plan

Goal 1: Use of Time - Teachers of grades 9-12 at GCIT will develop a more flexible, ergonomic learning environment for students to utilize by June 2019.

Strategies:
- Use of district provided technology to have access of critical/necessary information to students, staff, parents and community members at all times.
- Utilize PLCs to collaboratively work together in implementing common subject matter information for access at any time with any device.
- Provide sufficient technical and infrastructure.
- Provide high-quality professional development for leveraging technology for education utilizing the Universal Design for Learning (UDL) model.
- Integrate the Daggett Model for Effective Instruction
- Standard 8.0 Evaluation Tool

Objective(s):
- The technology infrastructure and equipment are available to meet the staff’s and students’ academic needs for effective operations as evidenced by pre and post surveys each year of the technology goal (2017, 2018, 2019).
- Begin to personalize learning for all students.
- Identify a Learning Management System (LMS) or related system.
- Train staff on LMS and blended learning.
- Train staff on the Daggett Model
- Align all courses to be accessible from anywhere.
- Begin to personalize learning for all students.

Indicator(s):
- Pre and Post Survey, higher percentage of students involved in on-line resource learning (surveys)
- Evidence of 21st Century learning in lesson plans and curriculum alignment to standards.
- Demonstrated access to curriculum, instruction, and assessments for all stakeholders.
- Data demonstrating implementation of blended learning across our learning community.
- Data demonstrating improved learning outcomes.
Action Plan for Goal 1

<table>
<thead>
<tr>
<th>Activities</th>
<th>Individual(s) Responsible</th>
<th>Resources</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing instructional staff and administration to the appropriate use and benefits of Office 365, the Daggett Model, Eduplanet21, Achieve3000 and the Universal Design for Learning and a Learning Management System.</td>
<td>Administration and Teachers</td>
<td>Professional development workshop(s), administrator meetings, instruction from the computer center staff Conferences Office 365 Instructional/Peer-to-peer Coaches Technology Coaches Laptops Ipads Interactive displays BrightLink/Smartboards Social Media</td>
<td>Year 1, 2</td>
</tr>
<tr>
<td>Activities</td>
<td>Individual(s) Responsible</td>
<td>Resources</td>
<td>Timeline</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Introducing students, parents/guardians and community members to the appropriate use and benefits of Office 365, Achieve3000, the Daggett Model and the Universal Design for Learning and a Learning Management System. Integrating Office 365 throughout various curriculums for student use to enhance learning.</td>
<td>Teachers, Guidance Counselors/Child Study Team members, students</td>
<td>Website Group presentation to specific student groups BYOD policy Laptops Ipads Office 365 Interactive displays BrightLink/Smartboards Social Media</td>
<td>Year 1,2</td>
</tr>
<tr>
<td>Implement adjustments, as needed, to the appropriate use and benefits of Office 365, Eduplanet21, Achieve3000, the Daggett Model, the Universal Design for Learning (UDL) and a Learning Management System (LMS) to inform/instruct students, administrators, teachers, staff, and parents/guardians of such adjustments.</td>
<td>Administrators Teachers, Guidance Counselors/Child Student Team members Parents Community members (advisory boards, RCGC, STW partnerships)</td>
<td>Meet the Teachers Night Advisory board meetings Office 365 Upper classmen parent information sessions (i.e.: FASFA, Jr and Sr parent presentations) Email notifications (Alert Solutions) to parents/guardians Social Media Interactive displays BrightLink/Smartboards</td>
<td>Year 1,2,3</td>
</tr>
</tbody>
</table>
Goal 2: Community Partnerships: To offer a variety of technological resources to enhance digital communication with students and/or families to support student learning and growth by June 2019.

Strategies:

- Students and/or their parents/guardians will use digital tools (i.e. Remind 01, Teacher webpages) to access, manage, evaluate, and communicate information between students, parents/guardians, and teacher's/school personnel.
- Standard 8.0 Evaluation Tool
- Provide high-quality professional development for leveraging technology for education utilizing the Universal Design for Learning (UDL) model.
- Research and select Learning Management System (LMS).

Objective(s): Students and/or their families will use digital tools to collaborate with other students/teachers to support 21st Century learning.

Indicator(s):

- Usage reports and Surveys (i.e. Remind 101, teacher created web pages, LMS)
- Evidence of 21st Century learning in lesson plans and curriculum alignment to standards.
- Demonstrated access to curriculum, instruction, and assessments for all stakeholders.
- Data demonstrating implementation of blended learning across our learning community.
- Data demonstrating improved learning outcomes.
<table>
<thead>
<tr>
<th>Activities</th>
<th>Individual(s) Responsible</th>
<th>Resources</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing instructional staff and administration to the appropriate use and benefits of Remind 101/teacher created web pages, Office 365 and LMS.</td>
<td>Administration and Teachers who have mastered the use of Remind 101/teacher web pages</td>
<td>Professional Development workshop(s)</td>
<td>Year 1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCIT website, Twitter, Facebook Office 365</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instructional/Peer-to-peer Coaches Technology Coaches Laptops Interactive displays BrightLink/Smartboards</td>
<td></td>
</tr>
<tr>
<td>Introducing students to the appropriate use and benefits of Remind 101/teacher created web pages, Office 365, LMS</td>
<td>Teachers, Guidance Counselors/Child Study Team members</td>
<td>Meet the Teachers Night Office 365 Laptops Ipad Interactive displays BrightLink/Smartboards Learning Management System BYOD policy GCIT website, Twitter, Facebook</td>
<td>Year 1,2</td>
</tr>
<tr>
<td>Introducing Parents/Guardians to the appropriate use and benefits of Remind 101/teacher web pages, Office 365 and a Research Learning Management System (LMS)</td>
<td>Teachers, Guidance Counselors/Child Study Team members</td>
<td>GCIT website, Twitter, Facebook Meet the Teachers Night Instructional Handouts Email notifications (Alert Solutions) to parents/guardians Office 365 Learning Management System (LMS)</td>
<td>Year 1,2</td>
</tr>
<tr>
<td>Activities</td>
<td>Individual(s) Responsible</td>
<td>Resources</td>
<td>Timeline</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Implement adjustments, as needed, to the use of digital tools (i.e. Remind 01, Teacher webpages, LMS, office 365) and inform/instruct students, administrators, teachers, staff, and parents/guardians of such adjustments.</td>
<td>Administration, Teachers, Guidance Counselors/Child Study Team members</td>
<td>Meet the Teachers Night Office 365 Instructional/Peer-to-peer Coaches Technology Coaches Laptops Ipad Interactive displays BrightLink/Smartboards GCIT website, Twitter, Facebook Email notifications (Alert Solutions) to parents/guardians/students Professional Development workshop(s) Learning Management System (LMS)</td>
<td>Year 3</td>
</tr>
</tbody>
</table>
Goal 3: Curriculum, Instruction and Assessment: Create access to curriculum and instructional strategies in addition to assessments and data to all stakeholders by 2019.

Strategies:
- Research and select Learning Management System (LMS).
- Provide high-quality professional development to teachers and students for blended learning.
- Provide high-quality professional development for leveraging technology for education utilizing the Universal Design for Learning (UDL) model.
- Integrate the Daggett Model for Effective Instruction
- Standard 8.0 Evaluation Tool

Objective(s):
- Identify a Learning Management System (LMS) or related system.
- Train staff on using this system and blended learning.
- Train staff on the Daggett Model
- Align all courses to be accessible from anywhere.
- Begin to personalize learning for all students.

Indicator(s):
- Evidence of 21st Century learning in lesson plans and curriculum alignment to standards.
- Demonstrated access to curriculum, instruction, and assessments for all stakeholders.
- Data demonstrating implementation of blended learning across our learning community.
- Data demonstrating improved learning outcomes.
<table>
<thead>
<tr>
<th>Activities</th>
<th>Individual(s) Responsible</th>
<th>Resources</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Learning Management Systems (LMS)</td>
<td>3-Year Technology Committee</td>
<td>3-Year Technology Committee, PowerSchool and/or other vendors, Instructional/Peer-to-peer Coaches, Technology Coaches, PD, Webinars, Interactive displays, BrightLink/Smartboards</td>
<td>Year 1</td>
</tr>
<tr>
<td>Train Staff/Students on Learning Management System (LMS), Universal Design for Learning (UDL), LinkIt, Eduplanet21, Achieve3000 and the Daggett Model.</td>
<td>Staff/Administration/Vendor</td>
<td>PD from identified vendor, Conferences, GCIT website, Office 365, Instructional/Peer-to-peer Coaches, Technology Coaches, Interactive displays, BrightLink/Smartboards</td>
<td>Years 1,2,3</td>
</tr>
<tr>
<td>Implement School-Wide Learning Management System (LMS), Universal Design for Learning (UDL), LinkIt, Uduplanet21, Achieve3000 and the Daggett Model.</td>
<td>Staff/Administration/Vendor</td>
<td>Staff/Administration/Vendor, Office 365, GCIT website, Twitter, Facebook, Instructional/Peer-to-peer Coaches, Technology Coaches</td>
<td>Years 2,3</td>
</tr>
<tr>
<td>Goal #</td>
<td>Initial Activities</td>
<td>Follow-Up Activities</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Through PLCs, teachers and instructional staff will be able to collaborate on their usage of Office 365, LinkIt, Achieve3000, Eduplanet21 and the Daggett Model, the Universal Design for Learning (UDL) and a Learning Management System (LMS).</td>
<td>Supplemental instruction to further develop skills.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Teachers/instructional staff are provided with instruction to develop skills to effectively utilize digital tools for communication (i.e. Remind 101, Teacher webpages, LMS, UDL).</td>
<td>Supplemental instruction to further develop skills.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduce staff, students, and stakeholders on Learning Management System (LMS), Universal Design for Learning (UDL), LinkIt and the Daggett Model or related services and blended learning strategies. Provide high-quality, ongoing, professional learning targeted to technology-infused content for all staff members. Deploy Learning Management System (LMS) Universal Design for Learning (UDL) and the Daggett Model and blended learning across our learning community over specified period of time.</td>
<td>Create professional development based on survey data and initial feedback from participants. Create professional development based on survey data and feedback from staff, students, and stakeholders. Utilize instructional/technology/peer-to-peer coaching and interdepartmental professional development opportunities to improve student achievement.</td>
<td></td>
</tr>
<tr>
<td>Goal #</td>
<td>Initial Activities</td>
<td>Follow-Up Activities</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GCIT teachers and administrators will review usage records (via survey results) of Office 365, Achieve3000, LinkIt and LMS to determine the effectiveness of this technology tool for effective communication and enhancement of student learning.</td>
<td>Survey data will be collected to adjust goal for follow up years.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GCIT teachers review usage records of Remind 101/teacher web pages to determine the effectiveness of these technology tools for effective communication and enhancement of student learning.</td>
<td>Distribution of surveys to teachers, parents/guardians, and students.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Analyze successful elements and areas that need improvement. Analyze data from Learning Management System (LMS), Achieve3000, LinkIt and standards based tests.</td>
<td>Adjust plan to support students and teachers during the transition to globalized digital learning. Adjust plan to support student learning.</td>
<td></td>
</tr>
<tr>
<td>Goal #</td>
<td>Activity</td>
<td>Funding Source (Federal/State/Private/District)</td>
<td>Amount</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Adobe Licensing</td>
<td>Local</td>
<td>$21,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Microsoft Licensing</td>
<td>Local</td>
<td>$23,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>VM Licensing</td>
<td>Local</td>
<td>$7,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>UMRA Licensing</td>
<td>Local</td>
<td>$16,250.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Service Manager</td>
<td>Local</td>
<td>$7,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Smartnet for Cisco Equipment</td>
<td>Local</td>
<td>$37,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Veeam Licensing</td>
<td>Local</td>
<td>$10,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Learning Management System</td>
<td>Local</td>
<td>$16,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Learning Management System</td>
<td>Local</td>
<td>$12,000.00 Year 2-3</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Solarwinds</td>
<td>Local</td>
<td>$6,850.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Internet</td>
<td>Local</td>
<td>$14,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Firewall / IPS</td>
<td>Local</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Barracuda Spam</td>
<td>Local</td>
<td>$7,600.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Data Center Maintenance</td>
<td>Local</td>
<td>$13,750.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>VOIP Maintenance</td>
<td>Local</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Data Center Batteries</td>
<td>Local</td>
<td>$5,500.00 Year 1</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Host Server</td>
<td>Local</td>
<td>$30,000.00 Year 2</td>
</tr>
<tr>
<td>1,2,3</td>
<td>SAN</td>
<td>Local</td>
<td>$40,000.00 Year 3</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Access Points</td>
<td>Local</td>
<td>$3,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Wiring</td>
<td>Local</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>MDM</td>
<td>Local</td>
<td>$1,500.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>SSL Certificates</td>
<td>Local</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Other Software</td>
<td>Local</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Other Projects</td>
<td>Local</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Other Repair / Supply Purchases</td>
<td>Local</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Other Maintenance</td>
<td>Local</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Technology Department Consultants</td>
<td>Local</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Battery Back Up - UPS</td>
<td>Local</td>
<td>$25,000.00 Year 1</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Battery Back Up - UPS</td>
<td>Local</td>
<td>$20,000.00 Year 2</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Battery Back Up - UPS</td>
<td>Local</td>
<td>$15,000.00 Year 3</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Achieve3000</td>
<td>Local</td>
<td>$42,000,000</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Instructional Coaches</td>
<td>Local</td>
<td>$19,800.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Technology Coaches</td>
<td>Local</td>
<td>$15,000.00 Year 2,3</td>
</tr>
<tr>
<td>1,2,3</td>
<td>LinkIt</td>
<td>Local</td>
<td>$22,000,000</td>
</tr>
<tr>
<td>1,2,3</td>
<td>McRel</td>
<td>Local</td>
<td>$4,200.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Emperical Education Inc.</td>
<td>Local</td>
<td>$2,900.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Eduplanet21</td>
<td>Local</td>
<td>$4,700.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Harris Schools Solutions License PowerWalkthrough</td>
<td>Local</td>
<td>$2,100.00 Annual</td>
</tr>
<tr>
<td>Goal #</td>
<td>Activity</td>
<td>Funding Source (Federal/State/Private/District)</td>
<td>Amount</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Technology Inventory Control</td>
<td>Local</td>
<td>$9,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Laptops Instructional</td>
<td>Local</td>
<td>$35,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Notebooks</td>
<td>Local</td>
<td>$140,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Laptop Non-Instructional</td>
<td>Local</td>
<td>$10,000.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>Desktops/Monitors: Assessments</td>
<td>Local</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>1,3</td>
<td>Laptop Carts</td>
<td>Local</td>
<td>$45,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>BrightLinks</td>
<td>Local</td>
<td>$25,500.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>Peer-to-Peer Coaching Consultant</td>
<td>Local</td>
<td>$20,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Assessment Consultant</td>
<td>Local</td>
<td>$18,500.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>CEC Conference</td>
<td>Local</td>
<td>$3,500.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>ACTE Tech Vision Conference</td>
<td>Local</td>
<td>$3,800.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>ASCD Conference</td>
<td>Local</td>
<td>$6,900.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>Model Schools Conference</td>
<td>Local</td>
<td>$6,500.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>ISTE Conference</td>
<td>Local</td>
<td>$4,000.00 Annual Year 2, 3</td>
</tr>
<tr>
<td>1,2,3</td>
<td>IEP Direct Software</td>
<td>Local</td>
<td>$9,900.00 Annual</td>
</tr>
<tr>
<td>1,3</td>
<td>Aleks Software</td>
<td>Local</td>
<td>$4,400.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Laptops</td>
<td>Local</td>
<td>$12,900.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>APEX</td>
<td>Local</td>
<td>$4,800.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Learning Management System</td>
<td>Local</td>
<td>$45,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Universal Design for Learning</td>
<td>Local</td>
<td>$75,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>Daggett Instructional Model</td>
<td>Local</td>
<td>$75,000.00</td>
</tr>
<tr>
<td>1,2,3</td>
<td>NJ Techspo Conference</td>
<td>Local</td>
<td>$3,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>NJPSA Conference</td>
<td>Local</td>
<td>$4,000.00 Annual</td>
</tr>
<tr>
<td>1,2,3</td>
<td>IEP Direct</td>
<td>Local</td>
<td>$12,000.00 Annual</td>
</tr>
</tbody>
</table>
Stakeholder Assurance

I agree to the contents in this educational plan, and the assurance that I will be involved in the implementation of this Technology Plan for Digital Learning. Involvement in the implementation of this Plan may include: reviewing the progress of meeting the goals and objectives, being responsible for completing one or more activities in the action plan, participating in the revisions of the plan.

<table>
<thead>
<tr>
<th>Stakeholder Name</th>
<th>Stakeholder Title</th>
<th>Stakeholder Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Michael Dicken</td>
<td>District Superintendent</td>
<td></td>
</tr>
<tr>
<td>Dr. Gina Mateka</td>
<td>Chief Academic Officer</td>
<td></td>
</tr>
<tr>
<td>Mr. Jamie Dundee</td>
<td>Principal - GCIT</td>
<td></td>
</tr>
<tr>
<td>Dr. Donna Fondacaro</td>
<td>Assistant Principal/ Curriculum</td>
<td></td>
</tr>
<tr>
<td>Ms. Christine Deeck</td>
<td>Director of Student Personnel Services</td>
<td></td>
</tr>
<tr>
<td>Ms. Kathy White</td>
<td>Supervisor of Assessment</td>
<td></td>
</tr>
<tr>
<td>Mr. Steven Fisher</td>
<td>Director of Campus Technology</td>
<td></td>
</tr>
<tr>
<td>Ms. Elizabeth O'Leary</td>
<td>Media Specialist</td>
<td></td>
</tr>
<tr>
<td>Mrs. Maria Newsom</td>
<td>Parent</td>
<td></td>
</tr>
<tr>
<td>Mr. Mark Howie</td>
<td>Teacher</td>
<td></td>
</tr>
<tr>
<td>Mr. Daniel Pacifico</td>
<td>Teacher</td>
<td></td>
</tr>
<tr>
<td>Mrs. Elena Sima</td>
<td>Teacher</td>
<td></td>
</tr>
<tr>
<td>Mrs. Susan Williams</td>
<td>Teacher</td>
<td></td>
</tr>
<tr>
<td>Rhiannon Caple</td>
<td>Students – Information Technology</td>
<td></td>
</tr>
<tr>
<td>Scott Murray</td>
<td>Student – Information Technology</td>
<td></td>
</tr>
<tr>
<td>Mrs. Donna Ragonese</td>
<td>School Board member</td>
<td></td>
</tr>
</tbody>
</table>
Technology Plan Components CHECKLIST

- If the Future Ready District Level summary report was generated within the past year school year, include a copy of the district report with the Plan submission.
- If the NJTRAx Digital Learning Surveys summary report was generated, include a copy for all identified schools.

This form may be used to ensure all components are addressed in the submitted document for review. Please address the areas below for each school that will be the focus for digital learning transformation over the next three years in the technology plan.

County/District Code: 15/1775
School/Charter School/Renaissance School: Gloucester County Institute of Technology
NJTRAx PARCC Technology Readiness Rating: 9
NJTRAx Digital Learning Readiness Rating: 5.3 of 10

<table>
<thead>
<tr>
<th>STEP</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
District Report
Gloucester County Vocational-technical School District
(Ratings based on Minimum PARCC specifications.)

This report provides a snapshot of the district’s technology readiness for online assessment based on the NJTRAx data provided by the school’s representative. The readiness ratings in this report are only as accurate as the data upon which they are based and are not a guaranteed indicator of success. This report is intended to be informational and to be used as one element of the data reviewed by Districts and Local Educational Agencies (LEAs)/Testing Sites as they prepare for technology readiness.

District Technology Readiness for Online Assessment

The Readiness Ratings for Online PARCC Performance Assessment (20-day window) use a scale of 0-9, where 0 = Missing or Out of Range Data, 1-3 = Low Not Ready, 4-6 = Moderate Not Ready, and 7-9 = Ready.

The report is based upon assumptions that influenced the calculations and results.

The assumptions are as follows:

- The administration window for each of the two PARCC summative assessments is twenty (20) days. All assessments and make-ups must be administered within the twenty day window. Although some LEAs/Testing Sites may be able to schedule fewer days, the report is based on the availability of all twenty days.

- As per PARCC documentation, the report uses two assessment sessions per day in its calculations.

- This report uses a 10% overage included in the amount of devices that are needed in order to account for possible breakage and repair issues that could occur during the assessment administration.

- This report uses PARCC minimum bandwidth specifications for online testing. Those specifications are: 50 Kbps per student with no content caching and 5 Kbps when content caching is used. Eighty percent (80%) of the available Internet bandwidth is used in the network readiness calculation since 80% represents the percentage of Internet bandwidth typically available for high quality data transport.

- A “No Rating” will display in the results when one of two situations arise:

 - The rating could not be determined due to missing data from the school’s NJTRAx data file.
The data are out of range – for example, an Internet utilization entry with the entry at 0% (which does not take into account normal, everyday usage) or 100% (which indicates there would be no bandwidth available for testing above normal usage).

It should be noted that the reporting feature of the PARCC TRT does not include all of these assumptions. Due to this, the results of this report may differ from the reports found in the PARCC TRT.

District Report: Executive Summary

Technology Readiness Rating
To be considered OVERALL TECHNOLOGY READY FOR ONLINE TESTING the District must meet each of the following criterion:
A) The District must be rated Network Ready (see below for definition)
B) All schools in the district that are testing sites must be rated as Technology Ready for Online Testing.

Network Readiness Rating
If the District is the Internet Service Provider for its schools then, to be deemed Network Ready, the district must have adequate bandwidth to accommodate normal traffic plus all simultaneous test takers from all schools across the duration of the testing window. In addition, all its schools must be Network Ready.

If the District is not the ISP, then to be considered Network Ready, all its schools must be Network Ready.

Device Readiness Rating
To be device ready, a district must have all of its schools device ready.
Testing Specifications

Number of schools: 2

Number of students to be tested: 1012

Number of test sittings per Grade 3-5 student: 8

Number of test sittings per Grade 6-11 student: 7

Grades Tested: 9, 10, 11, 12+

Assessment Window: 30 days

Assessment Sessions per Day: 2

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>345</td>
</tr>
<tr>
<td>10</td>
<td>329</td>
</tr>
<tr>
<td>11</td>
<td>315</td>
</tr>
<tr>
<td>12+</td>
<td>23</td>
</tr>
</tbody>
</table>
Summary Status Report

Percentage of Schools that are Ready for Online Testing

- Overall Technology Ready Schools: (1 out of 2)
- Network Ready Schools (1 out of 2)
- Device Ready Schools (2 out of 2)

School Technology Readiness Levels

- Not Tested (Inactive): 50%
- DLM: 50%
- Missing Data: 50%
- Readiness Level 1-3: 50%
- Readiness Level 4-6: 50%
- Readiness Level 7-9: 50%

School Network Readiness Levels

- Not Tested (Inactive): 50%
- DLM: 50%
- Missing Data: 50%
- Readiness Level 1-3: 50%
- Readiness Level 4-6: 50%
- Readiness Level 7-9: 50%

School Device Readiness Levels

- Not Tested (Inactive): 100%
- DLM: 100%
- Missing Data: 100%
- Readiness Level 1-3: 100%
- Readiness Level 4-6: 100%
- Readiness Level 7-9: 100%
A District is Network Ready for Online Assessment if it meets one of two criteria:

- If the district is the Internet Service Provider (ISP) for its schools, then all its schools must be network ready and there must be adequate district Internet bandwidth available to accommodate all simultaneous users from all schools across the district at 50 Kbps per test taker for those not using caching servers, and at 5 Kbps for those using caching servers.
- If the district is not the ISP then to be considered network ready all the schools must be rated as Network Ready for Online Assessment.

New Jersey/PARCC Guidelines for Overall District Technology Readiness for Online Assessment

To be considered OVERALL TECHNOLOGY READY FOR ONLINE TESTING the district must meet each of the following criterion:

- All schools must be rated as Technology Ready for Online Assessment.
- The District must be rated Network Ready for Assessment: If the district is the Internet Service Provider (ISP) for its schools, then there must be adequate district Internet bandwidth available to accommodate normal Internet traffic plus the extra load required to meet the online assessment demands of the maximum number of simultaneous test takers for all schools across the district, for the duration of the testing window. If the district is not the ISP, then to be considered network ready, the district must have all the schools rated as Network Ready for Online Assessment.

This District’s Network Status

Percentage of Network Ready Schools:

<table>
<thead>
<tr>
<th>Category of Network Readiness for Online Assessment</th>
<th>Count of Schools</th>
<th>Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT TESTED</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DLM</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MISSING DATA</td>
<td>1</td>
<td>Adult Regional High School</td>
</tr>
<tr>
<td>NOT READY Low Level Rating:1-3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NOT READY Mid-Level Rating:4-6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>READY Rating:7-9</td>
<td>1</td>
<td>Gloucester County Institute Of Technology</td>
</tr>
</tbody>
</table>

Recommendations

Please check your individual schools’ network ratings and associated recommendations.
District Device Readiness
Gloucester County Vocational-technical School District
(Ratings based on Minimum PARCC specifications.)

The chart to the right provides a snapshot of the Device Readiness for Testing for the schools in this District.

The table below provides the ratings for individual schools in the district.

<table>
<thead>
<tr>
<th>Category of Device Readiness for Online Assessment</th>
<th>Count of Schools</th>
<th>Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT TESTED</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DLM</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MISSING DATA</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NOT READY Low Level Rating:1-3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NOT READY Mid-Level Rating:4-6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>READY Rating:7-9</td>
<td>2</td>
<td>Adult Regional High School</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gloucester County Institute Of Technology</td>
</tr>
</tbody>
</table>

Recommendations
For specific recommendations on device readiness, please review the reports from each school, or use the Sandbox to investigate how the District’s readiness ratings change when devices are upgraded or added.
Executive Summary

Technology now enables personalized digital learning for every student in the nation. The Future Ready Pledge, according to the U.S. Department of Education, is designed to set out a roadmap to achieve that success and to commit districts to move as quickly as possible towards a shared vision of preparing students for success in college, careers and citizenship. With student learning at the center, a district must align each of the eight (8) key categories, called gears, in order to implement and sustain successful digital learning. Digital learning readiness can only be accomplished through a systemic approach that addresses all gears.

The 8 Gears are as follows:

1. Curriculum, Instruction, and Assessment
2. Use of Time
3. Technology, Networks, and Hardware
4. Data and Privacy
5. Community Partnerships
6. Professional Learning
7. Budget and Resources
8. Innovative Leadership

Empowered leadership is critical as schools vision, plan, implement, and assess continually. Successful implementation of digital learning is contingent upon thoughtful staging of policies, leadership, and practices at the school and district levels.
Digital Learning Index

Data have been collected from six stakeholder groups: students, parents/guardians, teachers, school administrators, information technology coordinator, and educational technology coordinator. This consolidated report represents a summary of all those perspectives on the digital learning readiness of the school and digital learning implementation, both on 10-point scales. See below.

This figure charts the Digital Learning Implementation rating vs. the Digital Learning Readiness rating for each of the first five gears. The quadrants in which this school’s ratings are charted are indicators of the school’s progress to date in the respective Gears. The quadrant to aspire to is Q2 (Ready and Implementing). The quadrant to avoid is Q4 (Not Ready, yet Implementing).

The Digital Learning Readiness Rating is scored on a continuum from Investigating, to Envisioning, Planning, and Staging for implementation. Each of the Gear ratings is charted below on a scale of 0-10.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator.

* The five (5) Gears are displayed that have both Readiness and Implementation scales.

The Digital Learning Readiness Rating is scored on a continuum from Investigating, to Envisioning, Planning, and Staging for implementation. Each of the Gear ratings is charted below on a scale of 0-10.
A school's implementation rating represents the extent to which digital learning is implemented with students. The Digital Learning Implementation Rating is scored on a scale of 1-10 on a continuum from no/low implementation, to moderate, and then high implementation. Only 5 of the 8 gears are used to calculate the implementation score, since the other three gears do not directly impact students.

Digital Learning Implementation Rating

Figure: Digital Learning Implementation: Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)

- Curriculum, Instruction, and Assessment: 5.9
- Use of Time: 5.3
- Technology, Networks, and Hardware: 5.4
- Data and Privacy: 6.1
- Community Partnerships: 4.0

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator
Gear Overview

Curriculum, Instruction, and Assessment

21st Century/Deeper Learning
- Personalized Learning
- Collaborative, Relevant, and Applied Learning
- Leveraging Technology
- Assessment—Analytics Inform Instruction

Through a flexible, consistent, and personalized approach to academic content design, instruction, and assessment, teachers with the support of robust and adaptive tools can customize instruction for groups of students or on a student-to-student basis to ensure relevance and deep understanding of complex issues and topics. Providing multiple sources of high-quality academic content offers all students greater opportunities to personalize and reflect on their own work, think critically, and engage frequently to enable deeper understanding of complex topics. It is the learning needs of students that drive decisions related to technology, social media, and infrastructure. In this system, data and research are the building blocks of diagnostic, formative, and summative assessments—all of which are key elements in a system where learning is personalized, individualized, or differentiated to ensure learner success. Students and education professionals have access to up-to-date devices and high-speed broadband 24-hours-per-day, 7-days-per-week (24/7).

Gear Report: Readiness Digital Learning

Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)

Figure: Readiness for Digital in Curriculum, Instruction, and Assessment

A school’s implementation rating represents the extent to which digital learning is implemented with students. The Digital Learning Implementation Rating is scored on a scale of 1-10 on a continuum from no/low implementation, to moderate, and then high implementation. Only 5 of the 8 gears are used to calculate the implementation score, since the other three gears do not directly impact students.
Figure: Digital Learning Implementation in Curriculum, Instruction, and Assessment

- 21st Century/Deeper Learning: 7.1
- Personalized Learning: 5.7
- Collaborative, Relevant, and Applied Learning: 5.9
- Leveraging Technology: 5.4
- Assessment—Analytics Inform Instruction: 6.0

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator

<table>
<thead>
<tr>
<th>No/Low level of implementation</th>
<th>Moderate level of implementation</th>
<th>High level of implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>4-7</td>
<td>8-10</td>
</tr>
</tbody>
</table>
Element: 21st Century/Deeper Learning

In classrooms where students are acquiring 21st Century/deeper learning, curriculum and instruction must be aligned with the vision for digital learning. Such work is predicated on the expectation that all students will leave the education system well prepared for college acceptance or for alternative paths to workplace readiness. These expectations are grounded in standards-based content and elements of deeper learning (e.g., critical thinking and decision making, creativity and innovation, bi-directional communication, research and information literacy, and self-direction). Opportunities for learning exist that empower all students to experience and master the core understandings related to that content.

School leaders adopt formal processes to systematically integrate 21st Century skills in support of a deeper learning model. All staff members are familiar with recent cognitive science research related to these skills and use the strategies recommended by that research as a design feature of all curricula and instruction.

Guiding Question 1: Curriculum Aligned to 21st Century Skills

Are classrooms in this school student-centered learning environments that foster 21st Century Skills?

CRITICAL THINKING SKILLS

61% of STUDENTS said that their teachers teach them specific thinking skills.

Overall, SCHOOL ADMINISTRATORS report that teachers in the school place a MODERATELY STRONG EMPHASIS on critical thinking.

81% of PARENTS/GUARDIANS report that their student is being taught how to think critically.

When asked about the emphasis they place on critical thinking in their lessons/units, TEACHERS reported: STRONG EMPHASIS.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
CREATIVITY AND INNOVATION SKILLS

Overall, **TEACHERS** say they place **STRONG EMPHASIS** on creativity and innovation in their classrooms.

83% of **PARENTS/GUARDIANS** from this school reported that their student’s creativity was being enhanced through the use of technology.

Respondents: 140 Parents/Guardians, 30 Teachers

RESEARCH AND INFORMATION LITERACY SKILLS

69% of **STUDENTS** say they appropriately cite their sources when doing Internet research for assignments.

When asked about the emphasis that they place on research and information literacy in their classrooms, the most frequent answer from **TEACHERS** was: **MODERATE EMPHASIS**.

86% of **PARENTS/GUARDIANS** say that their student is conducting research on topics that are of interest/importance to him/her.

Overall, **SCHOOL ADMINISTRATORS** say that teachers in this school place **MODERATE EMPHASIS** on research and information literacy for learning.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators

COMMUNICATION IN THE CLASSROOM

When asked how frequently they use social media for learning, **STUDENTS** say **NEVER**.

83% of **PARENTS/GUARDIANS** say their student uses technologies to communicate with other students as he/she learns online, (e.g., email, texting, online chats, videoconferencing, exchanging files).

Overall, **TEACHERS** in this school say they place **STRONG EMPHASIS** on communication in their classrooms.

Overall, **SCHOOL ADMINISTRATORS** say teachers in this school place **MODERATE EMPHASIS** on communication in their classrooms.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Teacher Emphasis on 21st Century Skills

Figure: The extent to which teachers reported placing emphasis on specific 21st Century skills in their unit and lesson plans.

<table>
<thead>
<tr>
<th>Skill</th>
<th>Strong emphasis</th>
<th>Moderate emphasis</th>
<th>Little emphasis</th>
<th>No emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical thinking and problem solving</td>
<td>70%</td>
<td>26.7%</td>
<td>6.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Communication</td>
<td>73.3%</td>
<td>23.3%</td>
<td>3.3%</td>
<td>0%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>60%</td>
<td>30%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Digital citizenship</td>
<td>26.7%</td>
<td>26.7%</td>
<td>40%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Online research and information literacy</td>
<td>33.3%</td>
<td>46.7%</td>
<td>16.7%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>50%</td>
<td>36.7%</td>
<td>10%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Self-direction</td>
<td>53.3%</td>
<td>33.3%</td>
<td>13.3%</td>
<td>0%</td>
</tr>
<tr>
<td>Creativity and innovation</td>
<td>46.7%</td>
<td>33.3%</td>
<td>13.3%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers

Guiding Question 2: Assessment of 21st Century Skills

To what extent are teachers monitoring and addressing the progress of all students for each of the 21st Century skills?

Assessing 21st Century Skills through Classroom Observation

Figure: The percentage of teachers who reported that they assess specific 21st Century skills through classroom observation.

<table>
<thead>
<tr>
<th>Skill</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical thinking and problem solving</td>
<td>56.7%</td>
</tr>
<tr>
<td>Communication</td>
<td>56.7%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>63.3%</td>
</tr>
<tr>
<td>Digital citizenship</td>
<td>23.3%</td>
</tr>
<tr>
<td>Online research and information literacy</td>
<td>40%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>60%</td>
</tr>
<tr>
<td>Self-direction</td>
<td>50%</td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers
Assessment of 21st Century Skills through Rubric-Based Performance Assessments

Figure: The percentage of teachers who reported that specific 21st Century skills are assessed through classroom performance assessments (rubric-based).

Respondents: 30 Teachers

<table>
<thead>
<tr>
<th>Skill</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical thinking and problem solving</td>
<td>46.7%</td>
</tr>
<tr>
<td>Communication</td>
<td>40%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>43.3%</td>
</tr>
<tr>
<td>Digital citizenship</td>
<td>10%</td>
</tr>
<tr>
<td>Online research and information literacy</td>
<td>43.3%</td>
</tr>
<tr>
<td>Self-direction</td>
<td>30%</td>
</tr>
<tr>
<td>Creativity and innovation</td>
<td>40%</td>
</tr>
</tbody>
</table>

Assessment of 21st Century Skills Conducted Formally through District/School Instruments

Figure: The percentage of teachers who reported that specific 21st Century skills were embedded in the curriculum assessments formally administered by the district or school.

Respondents: 30 Teachers

<table>
<thead>
<tr>
<th>Skill</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical thinking and problem solving</td>
<td>13.3%</td>
</tr>
<tr>
<td>Communication</td>
<td>6.7%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>10%</td>
</tr>
<tr>
<td>Digital citizenship</td>
<td>3.3%</td>
</tr>
<tr>
<td>Online research and information literacy</td>
<td>13.3%</td>
</tr>
<tr>
<td>Self-direction</td>
<td>0</td>
</tr>
<tr>
<td>Creativity and innovation</td>
<td>0</td>
</tr>
</tbody>
</table>
Guiding Question 3:
To what extent does instruction in the school embody recent cognitive science research on effective teaching and learning strategies (e.g., active learning, offering students choices, scaffolded learning, etc.)?

<table>
<thead>
<tr>
<th>EVIDENCE-BASED DECISION MAKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall, TEACHERS report that the decision making processes in this school, from classroom instruction to the design of professional learning opportunities, ARE MODERATELY INFORMED by reliable and valid data and research.</td>
</tr>
<tr>
<td>Overall, SCHOOL ADMINISTRATORS say that the decision making processes in this school, from classroom instruction to the design of professional learning opportunities, ARE INFORMED by reliable and valid data and research.</td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers, 11 School Administrators
Element: Personalized Learning

Educators leverage technology, a range of digital learning resources, and the principles of Universal Design for Learning (UDL) to personalize the learning experience for each student. Students’ learning is scaffolded through differentiation and individualization, and use competency-based learning to ensure all students attain mastery. Personalization is an approach to learning that is student-centric, where students have a significant degree of control and choice in what, when, and how they learn. It involves tailoring the content, pacing, and feedback to the needs of each student and empowering all students with choice, where they regulate and take ownership of significant aspects of their learning. In digital learning environments, all students are provided the opportunity to do authentic real-world work similar to that of professionals in the larger society. They collaborate with educators, fellow students, and others outside of the school environment on projects that often (1) involve the creation of knowledge products, (2) foster deep learning, and (3) have value beyond the classroom walls. This work is supported through connected teaching and engages other professionals, parents/guardians, and community members as appropriate.

Guiding Question 1: Personalized Student-Centered Learning
Do the learning environments in the school encourage and support personalized, student-centered learning?

Current Implementation of Personalized Learning

Figure: The extent to which each respondent group perceives the school to be implementing personalized learning.

Respondents: 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator
Student Indicators of Personalized Learning

Figure: Students report the frequency with which they engage in personalized learning in at least some of their classes.

Guiding Question 2: Student Voice, Choice, and Influence in Their Own Learning

To what extent do students have choice and control in their own learning? Is the learning environment student-driven? Are students engaged and self-directed in learning?

Teachers Expected to Foster Self-Direction in Students

Figure: Extent to which teachers and school administrators agree with the statement: "All teachers are expected to foster self-direction in students."
Respondents: 373 Students, 30 Teachers

Student Choice in Media Used to Learn
Figure: Extent to which students and teachers agree that students have choice in the media they use to learn.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students: In some of my classes I get to choose the media (video, animation, audio, etc.), books, websites, apps, and other learning materials I use to learn.</td>
<td>13.7%</td>
<td>25.2%</td>
<td>20.4%</td>
<td>27.9%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Teachers: Students are offered a variety of media and modalities to learn content.</td>
<td>26.7%</td>
<td>16.7%</td>
<td>33.3%</td>
<td>16.7%</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

Respondents: 373 Students, 30 Teachers

Student Choice in Media Used to Demonstrate What They Learn
Figure: Extent to which students, teachers, school administrators, and educational technology coordinators agree that students have choice in the media they use to demonstrate their learning.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>11%</td>
<td>29%</td>
<td>26%</td>
<td>24.1%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Teachers</td>
<td>16.7%</td>
<td>30%</td>
<td>26.7%</td>
<td>20%</td>
<td>6.7%</td>
</tr>
<tr>
<td>School Administrator(s)</td>
<td>27.3%</td>
<td>45.5%</td>
<td>27.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Technology Coordinator(s)</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 373 Students, 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator

Overall, TEACHERS say they place MODERATE EMPHASIS on online research and information literacy in their lesson/unit plans.

23% of STUDENTS say that they appropriately cite their sources when using Internet research to complete assignments.

STUDENT RESEARCH AND INFORMATION LITERACY
Element: Collaborative, Relevant, and Applied Learning

Students are engaged in collaborative learning communities with peers, teachers, experts, and others outside the school environment. They are empowered through digital learning environments to do work similar to that of professionals in the larger society. Their projects often involve the creation of knowledge products, foster 21st Century skills/deeper learning, and have value beyond the classroom walls. Students are self-directed as well as cognitively, socially-emotionally engaged in their learning.

Guiding Question 1: Collaborative Learning
Are students frequently engaged in collaborative learning with peers, teachers, experts, and/or others from outside the school?

Collaborative Learning

20% of STUDENTS say that, for some projects, they work online with people outside of their classroom.

90% of PARENTS/GUARDIANS say, “My student works collaboratively on projects with classmates.”

Overall, SCHOOL ADMINISTRATORS reported STRONG EMPHASIS given to collaboration in classrooms.

When asked about the emphasis they place on collaboration in their classrooms, TEACHERS said that STRONG EMPHASIS is given.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Students Collaborate with Persons Outside of School

Figure: The percentage of teachers reporting on how often their students collaborate with people outside of the classroom (e.g., another classroom across the city or across the country, experts in another country).

Guiding Question 2: Authentic Learning
To what extent is the work that students are doing applied, relevant, and authentic? Does it have value beyond the classroom walls?

STUDENTS SOLVING REAL-WORLD PROBLEMS

STUDENTS report that they solve real-world problems as a part of their learning A FEW TIMES A WEEK.

Overall, SCHOOL ADMINISTRATORS report that students solve real-world problems in their school A FEW TIMES A WEEK.

66% of PARENTS/GUARDIANS say their student solves real-world problems as he/she learns.

The frequency with which TEACHERS report students solve real-world problems in their classrooms is A FEW TIMES A WEEK.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Student Perspective on Relevance of Research

Figure: The percentage of students reporting on how often they conduct research on topics that are of interest/importance to them.

![Bar Chart]

Respondents: 373 Students

- **Every day or almost every day:** 15.8%
- **A few times a week:** 27.3%
- **Once a month:** 26.8%
- **Rarely:** 21.2%
- **Never:** 8.8%

- On average, **STUDENTS** report that they conduct research on topics that are of importance and relevance to them **A FEW TIMES A WEEK**.

- **86%** of **PARENTS/GUARDIANS** say their student conducts research on topics that are of interest/importance to them.

- Overall, **SCHOOL ADMINISTRATORS** report that students in this school conduct research on topics that are of interest/importance to them **A FEW TIMES A WEEK**.

- **Overall, TEACHERS** report that students in their classrooms conduct research on topics that are of interest/importance to them **ONCE A MONTH**.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Element: Leveraging Technology

Education leaders set high expectations for evidence-based, digital learning transformations. They develop a culture of digital innovation as they redesign physical learning spaces and digital learning environments that integrate technology seamlessly into teaching, learning, and assessment. Specifically, this transformation may involve virtual learning, transition from paper to digital, digital citizenship and digital literacy for students. Student use of technology is dynamic; it empowers learning and ensures digital literacy and digital citizenship. Students learn in a culture of digital responsibility, and ethics prevail. All of this is dependent on 24/7 access to devices, broadband, and digital resources. Decisions related to technology, devices, networks, and infrastructure are driven by the learning needs of students in a culture of digital responsibility. The educators who teach in these digital learning environments have the skills to adopt and adapt to new technologies, using filters that ensure that the use of technology adds value to the learning process. Metrics are in place to document the schools’ academic return on investment.

Guiding Question 1: Student Use of Technology for Learning
How and to what extent are students using technology for learning?

Student Use of Technology in School

Figure: Students report on the frequency with which they use various technology applications in school.

<table>
<thead>
<tr>
<th>Technology Application</th>
<th>Every day or almost every day</th>
<th>A few times a week</th>
<th>Once a month</th>
<th>Rarely</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Internet for research</td>
<td>44.2%</td>
<td>34%</td>
<td>15.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online programs or websites that teach you about topics</td>
<td>24.4%</td>
<td>32.2%</td>
<td>11.8%</td>
<td>6.7%</td>
<td></td>
</tr>
<tr>
<td>Simulation programs (e.g., stock market challenge, managing a city, managing growth of a wolf population)</td>
<td>17.4%</td>
<td>28.4%</td>
<td>39.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning games</td>
<td>9.9%</td>
<td>22.3%</td>
<td>22.3%</td>
<td>18.5%</td>
<td></td>
</tr>
<tr>
<td>Robotics or other technology building tools</td>
<td>10.2%</td>
<td>9.7%</td>
<td>26.5%</td>
<td>44.5%</td>
<td></td>
</tr>
<tr>
<td>Computer coding programs</td>
<td>24.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email or texting</td>
<td>29.8%</td>
<td>14.5%</td>
<td>12.9%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Social media (e.g., Facebook, Twitter, or Instagram)</td>
<td>26.3%</td>
<td>12.6%</td>
<td>21.4%</td>
<td>29.5%</td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 373 Students
Student Use of Technology Applications for Learning

Figure: Students report on the frequency with which they use various technology applications for learning.

<table>
<thead>
<tr>
<th>Application</th>
<th>Every day or almost every day</th>
<th>A few times a week</th>
<th>Once a month</th>
<th>Rarely</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word processing</td>
<td>24.9%</td>
<td>35.7%</td>
<td>18.5%</td>
<td>12.6%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Spreadsheets</td>
<td>1.8%</td>
<td>9.9%</td>
<td>20.9%</td>
<td>34%</td>
<td>27.3%</td>
</tr>
<tr>
<td>Presentation applications</td>
<td>19%</td>
<td>26.3%</td>
<td>36.7%</td>
<td>13.4%</td>
<td></td>
</tr>
<tr>
<td>Digital image and/or video production</td>
<td>14.2%</td>
<td>17.7%</td>
<td>22.3%</td>
<td>27.6%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Online tests and quizzes</td>
<td>8.6%</td>
<td>36.5%</td>
<td>33%</td>
<td>13.9%</td>
<td>8%</td>
</tr>
<tr>
<td>Online access to test results/grades</td>
<td>55%</td>
<td></td>
<td>27.1%</td>
<td>8.8%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

Respondents: 373 Students

Student Access to Technology for Learning

Figure: Students report on their access and use of technology in learning.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Every day or almost every day</th>
<th>A few times a week</th>
<th>Once a month</th>
<th>Rarely</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>I use a computer or digital device in my learning in school.</td>
<td>53.4%</td>
<td></td>
<td>29.8%</td>
<td>11.8%</td>
<td></td>
</tr>
<tr>
<td>I use a computer or digital device in my learning out of school.</td>
<td>61.4%</td>
<td></td>
<td>26%</td>
<td>8.3%</td>
<td></td>
</tr>
<tr>
<td>I use the Internet in my learning in school.</td>
<td>54.2%</td>
<td></td>
<td>29.2%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>I use the Internet in my learning out of school.</td>
<td>58.4%</td>
<td></td>
<td>26%</td>
<td>8.3%</td>
<td></td>
</tr>
<tr>
<td>I access classroom materials online when I am at school.</td>
<td>40.8%</td>
<td>28.2%</td>
<td>18%</td>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>I access classroom materials online when I am outside of school.</td>
<td>36.2%</td>
<td>26.5%</td>
<td>17.7%</td>
<td>16.4%</td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 373 Students
Guiding Question 2: Technologically Facile/Digital Citizens
To what extent are students and staff prepared to leverage technology effectively for learning? Are students demonstrating digital citizenship, digital literacy, and digital responsibility?

Students Describe Their Level of Expertise with Technology
Figure: Students describe their own use of technology, factoring in both use at school and in their personal lives.

![Expert: Other students and adults often come to me for assistance. 11.3%](#)
![Informed: I use technology often and can learn new technologies without much trouble. 65.7%](#)
![Novice: Although I use technology, I sometimes find new technologies a bit confusing and need some assistance. 18.5%](#)
![Non-User: I don’t like to use technology unless I have to and often I find it difficult. 4.6%](#)

Respondents: 373 Students

Cyber Issues
Figure: The percentage of students who agree that the specific issues listed below represent a serious problem in their school.

- Student cyber bullying: 8.3%
- Students giving out personal information: 5.6%
- Students accessing inappropriate materials: 7%
- Students posting inappropriate pictures or media: 11%
- Students cheating or plagiarizing using technology: 9.4%
- Students wasting time/distractions using technology: 15%

Respondents: 373 Students
Guiding Question 3: Innovative Digital Culture. Driven by Research

Is there a digital innovation culture in the school that promotes pedagogy-driven digital transformations in curriculum, instruction, and assessment? To what extent are high expectations for evidence-based use of technology set by school leaders and clearly communicated to the educational community while modeling the adoption?

Culture of Digital Innovation

Figure: Teachers, school administrators, and educational technology coordinators report on their agreement with the statement: “Our school has established a culture of digital innovation, where educators are empowered to deepen and extend student learning through the use of technology, digital content, and media.”

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Key Reasons for Students to Use Technology in School

Figure: Percentage of parents/guardians who included the following skills in their top three rankings for how students should be using technology to improve learning.

- Learn at their own pace: 10%
- Learn when it is convenient for them: 2.9%
- Interact online with students from different communities: 3.6%
- Interact online with the teacher(s): 7.9%
- Study topics that are not currently offered at this school: 5.7%
- Learn wherever they choose: 3.6%
- Interact with other students through social media: 0%
- Learn from a variety of online sources (i.e., video animation, interactive media, simulations, virtual manipulatives): 58.6%
- Collaborate virtually with a team on a project: 7.9%

Respondents: 140 Parents/Guardians

Key Potential Outcomes from Student Technology Use for Learning

Figure: Percentage of parents/guardians who included the following skills in their top three rankings as to preferred potential student outcomes for technology use in your student’s school.

- Independence and self-direction in learning: 22.9%
- High interest and engagement in school: 7.9%
- Critical thinking skills and problem solving: 9.3%
- Collaboration and teamwork: 5%
- Thoughtful, ethical, and informed online conduct: 4.3%
- Global and cultural awareness: 5%
- High academic achievement: 5.7%
- Readiness for college and career: 35%
- Creativity and innovation: 5%

Respondents: 140 Parents/Guardians
Blended Learning
Figure: Teachers and school administrators report on the extent to which the school is implementing blended learning.

Online Courses for Students
Figure: Teachers and school administrators report on the extent to which the school is offering the option of online courses to students.

Digital Content, Digital Resources, Digital Tools
Figure: Teachers and school administrators report on the extent to which the school is offering digital content, digital resources, and digital tools to students.

Parents/Guardians Report on the Options Their Student has to Digital Resources and Online Classes
Figure: The percentage of parents/guardians who say they strongly agree or agree with the following statements.
Element: Assessment—Analytics Inform

Instruction

Schools use technology as vehicles for quality diagnostic, formative, and summative assessments. Such assessments are aligned to the vision for digital learning and include assessments for all learning standards, 21st Century skills. Student projects involve peer review and revision, as well as self-assessment, empowering them to excel. The school system has mechanisms (i.e., processes and digital environments) that empower staff and students to use data to improve, enrich, and guide the learning process. Educators actively use data to guide decisions related to curriculum, content, instructional strategies, and assessments.

Guiding Question 1: School Data Culture?
Is there a data culture in the school? To what extent are data used to inform decision making by staff and students? Are student data records easily and securely accessible to staff and, where appropriate, to students and their parents/guardians? Do students track their own progress using data, self-assessment and peer review?

STUDENT USE OF DATA

50% of STUDENTS say that they use grades and testing data to help them decide what to study next.

Overall, SCHOOL ADMINISTRATORS say students in their school TRACK their own progress against the learning goals/standards using assessment and other data.

90% of PARENTS/GUARDIANS say that their student uses data (i.e., grades, test results, feedback from teachers, etc.) to evaluate his/her own progress in learning.

Overall, TEACHERS agree that their students DO NOT TRACK their own progress against the learning goals/standards using assessment and other data.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Teachers Use Student Data to Inform Instruction
Figure: Extent to which stakeholders agree that teachers use data use to monitor student progress toward established learning goals at least a few times per week.

- **Strongly Agree**: 46.7%
- **Agree**: 40%
- **Neither Agree nor Disagree**: 13.3%
- **Disagree**: 27.3%
- **Strongly Disagree**: 54.5%

Respondents: 30 Teachers, 11 School Administrators

Student Data Records – Accessible and Secure
Figure: Extent to which teachers and school administrators agree that student data records are easily and securely accessible to staff who are authorized to use such records.

- **Strongly Agree**: Teachers 6.7%, School Administrator(s) 9.1%
- **Agree**: Teachers 46.7%, School Administrator(s) 18.2%
- **Neither Agree nor Disagree**: Teachers 23.3%, School Administrator(s) 27.3%
- **Disagree**: Teachers 23.3%, School Administrator(s) 45.5%
- **Strongly Disagree**: Teachers 9.1%, School Administrator(s) 9.1%

Respondents: 30 Teachers, 11 School Administrators

Guiding Question 2: Continuously Monitor and Inform Progress Toward Digital Learning
Is the school’s progress toward its digital learning vision being monitored, reported on, and used to inform decision making?

Metrics to Track Progress – Effective Use of Technology
Figure: Teachers and school administrators report on the extent to which the school (or district) is using established metrics to track how technology is leveraged to accelerate learning.

- **No/Low Implementation**: Teachers 36.7%, School Administrator(s) 18.2%
- **Low/Moderate Implementation**: Teachers 30%, School Administrator(s) 18.2%
- **Moderate Implementation**: Teachers 16.7%, School Administrator(s) 36.4%
- **Moderate/Full Implementation**: Teachers 10%, School Administrator(s) 18.2%
- **Full Implementation**: Teachers 6.7%, School Administrator(s) 9.1%

Respondents: 30 Teachers, 11 School Administrators
Metrics to Track Progress – Critical Thinking

Figure: The percentage of teachers who say their school’s approach to assessing critical thinking includes the following types of assessments.

- **Classroom observation**: 56.7%
- **Classroom performance assessments**: 46.7%
- **Embedded in curricular assessment**: 50%
- **District/school assessment**: 13.3%
- **Other**: 0%
- **Not Assessed**: 10%

Respondents: 30 Teachers

Metrics to Track Progress – Communication

Figure: The percentage of teachers who say their school’s approach to assessing communication includes the following types of assessments.

- **Classroom observation**: 56.7%
- **Classroom performance assessment**: 40%
- **Embedded in curricular assessment**: 40%
- **District/school assessment**: 6.7%
- **Other**: 0%
- **Not assessed**: 10%

Respondents: 30 Teachers
Metrics to Track Progress – Collaboration

Figure: The percentage of teachers who say their school’s approach to assessing collaboration includes the following types of assessments.

- **Classroom observation**: 63.3%
- **Classroom performance assessment**: 43.3%
- **Embedded in curricular assessment**: 33.3%
- **District/school assessment**: 10%
- **Other**: 0
- **Not assessed**: 10%

Respondents: 30 Teachers

Metrics to Track Progress – Digital Citizenship

Figure: The percentage of teachers who say their school’s approach to assessing digital citizenship includes the following types of assessments.

- **Classroom observation**: 23.3%
- **Classroom performance assessment**: 10%
- **Embedded in curriculum assessment**: 20%
- **District/school assessment**: 3.3%
- **Other**: 0
- **Not assessed**: 53.3%

Respondents: 30 Teachers
Metrics to Track Progress – Online Research and Information Literacy

Figure: The percentage of teachers who say their school’s approach to assessing online research and information literacy includes the following types of assessments.

- Classroom observation: 40%
- Classroom performance assessment: 43.3%
- Embedded in the curricular assessment: 26.7%
- District/school assessment: 13.3%
- Other: 0%
- Not assessed: 13.3%

Respondents: 30 Teachers

Metrics to Track Progress – Self-Direction

Figure: The percentage of teachers who say their school’s approach to assessing self-direction includes the following types of assessments.

- Classroom observation: 60%
- Classroom performance assessment: 30%
- Embedded in curricular assessment: 16.7%
- District/school assessment: 0%
- Other: 0%
- Not assessed: 20%

Respondents: 30 Teachers
Metrics to Track Progress – Creativity and Innovation
Figure: The percentage of teachers who say their school’s approach to assessing creativity and innovation includes the following types of assessments.

- Classroom observation: 50%
- Classroom performance assessment: 40%
- Embedded in curricular assessment: 23.3%
- District/school assessment: 0%
- Other: 0%
- Not assessed: 23.3%

Respondents: 30 Teachers

Metrics to Track Progress - Skills Not Assessed
Figure: The percentage of teachers and administrators who report that the 21st Century skills are not assessed at their school.

- Critical thinking and problem solving: 10%
- Communication: 10%
- Collaboration: 10%
- Digital citizenship: 53.3%
- Online research and information literacy: 13.3%
- Self-direction: 20%
- Creativity and innovation: 23.3%

Respondents: 30 Teachers
Student-centered learning requires flexibility and adaptability in the use of instructional time. Many schools are shifting away from Carnegie units to competency-based and personalized learning. Competency-based learning holds fixed the content and processes that the student needs to learn, but allows variability in the time each student takes to reach mastery. Personalized learning is student-centric, empowering students to have a significant degree of control and choice in what, when, and how they learn. Both adapt the learning to meet the needs of the learner, and both require innovative uses of technology to bring these concepts to scale. The technologies enable educators to transition classrooms to competency-based or personalized learning through: anywhere, anytime learning; diagnostic, formative and summative assessments; the management of learning; and the engagement of all students in learning, cognitively and emotionally. Such transitions require districts and schools to rethink and effectively leverage the use of instructional time.

A school’s implementation rating represents the extent to which digital learning is implemented with students. The Digital Learning Implementation Rating is scored on a scale of 1-10 on a continuum from no/low implementation, to moderate, and then high implementation. Only 5 of the 8 gears are used to calculate the implementation score, since the other three gears do not directly impact students.
Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)

Figure: Digital Learning Implementation in Use of Time

- Flexible Learning: Anytime, Anywhere: 5.5
- New Pedagogy, Schedules, and Learning Environment for Personalized Learning: 4.5
- Competency-Based Learning: 5.4
- Strategies for Providing Extended Time for Projects and Collaboration: 5.3

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator
Element: Flexible Learning; Anytime, Anywhere

By leveraging technology and media resources, online learning options are available for students at any time of day, from home, at school, and in the community. This enables students and teachers to use time innovatively, driven by student needs, interests, and preferences for learning. The key is flexibility and adaptability to meet the needs of the students.

Guiding Question 1: Offer Students Flexibility and Choice in Their Learning
To what extent has the school provided students with opportunities and choice in the use of technology for learning, including online classes, blended learning, media, digital content, asynchronous and synchronous learning, as well as face-to-face options?

Guiding Question 2: Adaptable School Schedule
Has the school established a schedule that can be adapted to meet the needs of individual students?

Flexibility in Time and Schedules
Figure: The extent to which teachers, school administrators, and educational technology coordinators consider flexibility in time and schedules is implemented in this school.

Respondents: 373 Students, 11 School Administrators
Element: New Pedagogy, Schedules, and Learning Environment for Personalized Learning

To facilitate more personalized learning, educators work together to identify and validate new designs for personalized learning wherein the use of time is adaptable and flexible. Associated resources are made available to all students both synchronously and asynchronously to promote flexibility.

Guiding Question 1: Personal Learning Plans with Variability

To what extent have educators worked with all students to create a personal learning plan for each student that includes variability based on need and choice?

15% of STUDENTS say they have a personalized learning plan, which they worked on with their teacher.

31% of PARENTS/GUARDIANS report “My student and his/her teacher create a personal learning plan to meet my student’s learning needs”

Overall, SCHOOL ADMINISTRATORS report this statement IS NOT REPRESENTATIVE of their school: “Teachers in my school have worked with each of their students to create personal learning plans.”

40% of TEACHERS say they work with each of their students to create a personal learning plan.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Guiding Question 2: Professional Learning that Addresses Personalized Learning in the Classroom

To what extent has the school provided professional learning and an implementation plan for teachers that foster personalized learning, competency-based learning, flexible learning plans, while incorporating technology options.

Offering Teachers Professional Development on Personalized Learning for Students

Figure: The percentage of school administrators and educational technology coordinators who agree that the district is providing teachers professional learning opportunities that empower them to personalize learning for their students.

Guiding Question 3: Learning Environments

To what extent has the school created a learning environment that enables personalized learning?

Features of the School’s Digital Learning Environment

Table: The percentage of school administrators who indicated that the digital learning environment provided by the school for students and teachers includes that specific feature.
Access to the School’s Digital Learning Environment

Figure: The percentage of teachers, school administrators, and educational technology coordinators who agree that their students have 24/7 access to the school’s digital learning environment.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td>13.3%</td>
<td>16.7%</td>
<td>30%</td>
<td>16.7%</td>
<td>23.3%</td>
</tr>
<tr>
<td>School Administrator(s)</td>
<td>9.1%</td>
<td>45.5%</td>
<td>45.5%</td>
<td>45.5%</td>
<td>0%</td>
</tr>
<tr>
<td>Educational Technology Coordinator(s)</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator
Element: Competency-Based Learning

Along with flexible schedules and as one facet of personalized learning, the pace of learning remains flexible, based on the needs of individual students and the challenges of complex, project-based work.

Guiding Question 1: Competency-Based Learning Implemented in School

Has the school implemented competency-based learning as a key pedagogy for learning? If so, is there a school environment in place that supports competency-based learning (e.g., a system for the measurement of student achievement that accommodates time variability for mastery among students)?

Measuring Progress Through Performance

Figure: Teachers and school administrators report on the extent to which their school is measuring student progress by performance and competence, rather than attendance/seat time.

Instruction Accommodates Variability in Pace of Student Learning

Figure: Teachers and school administrators report on the extent to which their school accommodates competency-based learning through reorganized grade books, assessments, content management systems, schedules, staffing, etc.
Element: Strategies for Providing Extended Time for Projects and Collaboration

Rather than rigid schedules and short class periods, time allocations are flexible, allowing for extended work time for complex projects. Digital learning enables all students to productively use time during and beyond the school day; often repurposing what was previously homework time.

Guiding Question 1: Flexible Schedules and Collaborative Learning Spaces

Has the school established flexible schedules and/or alternative instructional practices that include blocks of extended, open time and collaborative learning spaces where students can collaborate or work individually on projects?

Instructional Practices that Extend Learning Time - Student Perspectives

Figure: The percentage of students who agree that each of the following strategies are practiced in their classrooms at least a few times a week.

Respondents: 373 Students

Instructional Practices that Extend Learning Time – Teacher Perspectives

Figure: The level of implementation teachers report for this strategy in their schools.

Respondents: 30 Teachers
Guiding Question 2: Do Educators Adjust Instruction to Meet Needs of Students
To what degree have educators in this school adjusted the use of instructional time depending on the scaffolding and support students require?

STUDENT PROJECTS AND COLLABORATION

47% Teachers report that students in their class(es) have a significant role in determining key aspects of their learning (e.g., what essential questions they investigate, how they use technology to learn, when they learn, with whom they learn, and when their projects are complete).

Overall, Teachers report they use social media (e.g., Facebook, Twitter, or Instagram) for instructional purposes in their classrooms NEVER.

Respondents: 30 Teachers
When employed as part of a comprehensive educational strategy, the effective use of technology provides tools, resources, data, and supportive systems that increase learning opportunities and promote efficiency and effectiveness. Many such environments use universal design for learning (UDL) specifications to enable anytime, anywhere learning for all students. Instructional approaches are based on competency and mastery. Within these environments, caring adults ensure that each student succeeds. High quality, high-speed technology and infrastructure systems within a school district and in each school are essential, however, the learning needs of students drive all decisions related to technology.

A school’s implementation rating represents the extent to which digital learning is implemented with students. The Digital Learning Implementation Rating is scored on a scale of 1-10 on a continuum from no/low implementation, to moderate, and then high implementation. Only 5 of the 8 gears are used to calculate the implementation score, since the other three gears do not directly impact students.
Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator

Figure: Digital Learning Implementation in Technology, Networks, and Hardware

- Equity and Adequacy of Devices; Availability and Quality: 4.8
- Robust Network Infrastructure: 5.2
- Adequate and Responsive Support: 4.9
- Formal Cycle for Review and Replacement: 4.5

<table>
<thead>
<tr>
<th>No/Low level of implementation</th>
<th>0-3</th>
<th>Moderate level of implementation</th>
<th>4-7</th>
<th>High level of implementation</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Element: Equity and Adequacy of Devices; Availability and Quality

The school has adopted diverse, creative, and environmentally sound options to ensure that appropriate Internet-ready technology devices are available to all students to support learning at any time. In all cases, the driver for change is the district vision for digital learning. Decisions regarding the purchase of devices are a collaborative process involving representation from curriculum, instruction, assessment, information technology, and business groups. In some cases, schools will achieve equitable access through a 1:1 program, through a “bring your own device” (BYOD) program, or a blended environment. Equitable access is 24/7 and often accomplished through school-community partnerships.

Guiding Question 1: Equitable access
Do all students have equitable access to high-speed Internet-connected devices in all of their classes? What level and quality (high-speed and reliable) of access is currently available for students and staff?

Research Tip: Learning Advantages to 1:1 Mobile Learning 24/7
The key advantage to 1:1 (student to device) is the 24/7 access this provides students with a device for learning. The student sets up the mobile device with favorite apps, contacts, and websites. It is through this device that students access their school’s learning environment with all the learning resources, assignments, digital content, teacher and classmate connections, and data, now available 24/7. It becomes a critical component of their learning, always at the ready.

1:1 ACCESS TO DEVICES FOR STUDENTS

SCHOOL ADMINISTRATORS report NO 1:1 ACCESS in their school.

IT COORDINATORS classify this school as AT 1:1.

Respondents: 1 Information Technology Coordinator, 11 School Administrators

1:1 STUDENT-TO-DEVICE PROGRAMS

IT COORDINATORS say the school DOES NOT HAVE A 1:1 student-to-device program in at least some classrooms/grade levels.

According to the device inventory from NJTRAx PARCC Readiness, the RATIO OF STUDENTS-TO-DEVICES in this school is 4.5:1.

Respondents: 1 Information Technology Coordinator
Research Tip: Learning in 2:1 or 3:1 (student to device ratio)
When the student-to-device ratio has not yet reached 1:1, the impact of technology in learning can still be very positive; it just isn’t yet fully personalized for the student, nor 24/7.

Equitable Access to Technology for Learning
Figure: A comparison of the responses from the teachers, school administrators, and information technology coordinators on the extent to which students have access to up-to-date devices that would allow them to communicate, create, and collaborate effectively in their learning.

Type of Student Devices for Learning in School
Figure: The percentage of students who indicated they had the following types of access to devices in school.

<table>
<thead>
<tr>
<th>Item</th>
<th>Percent of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>My school provides me with a personal digital device for the year.</td>
<td>8.8%</td>
</tr>
<tr>
<td>I bring my own digital device(s) to school to use for learning.</td>
<td>68.9%</td>
</tr>
<tr>
<td>I use a mixture of digital devices, depending on which class I am attending.</td>
<td>59.2%</td>
</tr>
<tr>
<td>I use computers in the school lab.</td>
<td>51.2%</td>
</tr>
<tr>
<td>None of the above.</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

Respondents: 373 Students

BRING YOUR OWN DEVICE (BYOD)

IT COORDINATORS say the school HAS A BYOD program, at least at some grade levels or in some classrooms.

Respondents: 1 Information Technology Coordinator
Frequency of Student Use of Technology for Learning

Figure: The frequency with which students say they learn with technology

![Bar chart showing the frequency of student use of technology](image)

- **Every day or almost every day**: 53.4%
- **A few times a week**: 29.8%
- **Once a month**: 11.8%
- **Rarely**: 4.3%
- **Never**: 0%

Respondents: 373 Students

Type of Student Technology Use

Figure: Students average use of various technology applications in school.

Scale: 0=Never, 1-3=Rarely, 4-5=Once a month, 6-7=A few times a week, 8-10=Every day.

![Bar chart showing various technology applications](image)

- **The Internet for research**: 7.5
- **Word processing**: 6.1
- **Spreadsheets**: 4.3
- **Presentation applications**: 7.5
- **Digital image and/or video production**: 6.2
- **Simulation programs (e.g., stock market challenge, managing a city, managing growth of a wolf population)**: 4
- **Robotics or other technology building tools**: 3.7
- **Online programs or websites that teach you about topics**: 6
- **Online tests and quizzes**: 8.2
- **Email or texting**: 6.5
- **Social media (e.g., Facebook, Twitter, or Instagram)**: 4.6
- **Learning games**: 4.3
- **Online access to test results/grades**: 7.9
- **Computer coding programs**: 2.2

Respondents: 373 Students
Home Device

The **IT COORDINATORS** report that the school **DOES NOT** allow students (at least at some grade levels) to take school-provided devices home.

99% of **PARENT/GUARDIANS** report that the Internet-connected computer/device used by their student at home is provided by the **FAMILY**.

While 14% say it is provided by the **SCHOOL**.

61% of **STUDENTS** say they use a computer or digital device in their learning out of school.

Type of Student Devices for Learning at Home

Figure: The percentage of students who indicated that they had the following types of access to devices at home

<table>
<thead>
<tr>
<th>Device</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smartphone</td>
<td>92%</td>
</tr>
<tr>
<td>Tablet</td>
<td>35.9%</td>
</tr>
<tr>
<td>Desktop Computer</td>
<td>38.9%</td>
</tr>
<tr>
<td>Laptop Computer</td>
<td>73.2%</td>
</tr>
<tr>
<td>e-Reader</td>
<td>4%</td>
</tr>
<tr>
<td>Graphing Calculator</td>
<td>33.5%</td>
</tr>
<tr>
<td>Gaming Device</td>
<td>14.5%</td>
</tr>
<tr>
<td>Wearable Digital Devices</td>
<td>3.8%</td>
</tr>
<tr>
<td>None of the above</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Respondents: 373 Students
Guiding Question 2: Clear, Collaborative Device Selection Process

Is the decision making approach for device selection clearly articulated, collaborative, and aligned to the curricular and instructional goals, whether it is 1:1, BYOD, or other?

IMPACT OF SCHOOL PLANNING ON DIGITAL LEARNING

Overall, **SCHOOL ADMINISTRATORS** report that the district/school’s annual academic planning process **DOES NOT INFORM OR GUIDE** the budgetary decisions related to digital learning, technology, and infrastructure.

Respondents: 1 Information Technology Coordinator, 11 School Administrators

Acquisition Strategies

Figure: The percentage of Information Technology Coordinators who indicated their schools used the device acquisition strategies listed.

Overall, **IT COORDINATORS** report that technology budgets **(no results for answer values)** guided by academic planning.

Respondents: 1 Information Technology Coordinator
Element: Robust Network Infrastructure

A robust, environmentally sound infrastructure with high speed Internet bandwidth serves all schools. Teams monitor usage and identify and remedy possible bottlenecks prior to detrimental impacts on teaching and learning. Administrative processes and procedures are developed to maintain, operate, update, and govern the network. The infrastructure includes access to a digital learning platform that includes: a content management system (CMS); a learning management system (LMS); a referatory (i.e., database that refers user to appropriate sources) for apps, software, and other services aligned to the curriculum; a communication system; collaboration tools; and online and embedded assessments; etc. This platform ensures ready and consistent access to tools, resources, and communications for teaching, learning, assessment, and administration. The school community collaboratively designs, communicates, and implements responsible use policies with students and staff. Meanwhile, the network design follows these policies (e.g., filtering, redundancy, etc.). The infrastructure adequately serves various programs for students and staff, including 1:1 and BYOD, often by portioning the network to accommodate guest access. Funding for the infrastructure is consistent, driven by instructional needs in the district’s strategic plan. As policies are developed to guide the design and use of the network, there is strict coherence between law and enacted policy.

Guiding Question 1: Infrastructure

Is Internet access high speed, and is the network infrastructure responsive to the learning needs of students and staff?

NETWORK AND INTERNET SPEED AND RELIABILITY

QUESTION: Is the school’s network and the Internet consistently fast and reliable?

24% of STUDENTS say YES to the question.

When **IT COORDINATORS** were asked, their most frequent response was that they **CONSIDER** access to the school’s network and the Internet to be consistently fast and reliable.

And, **20% of TEACHERS** say YES in response to the question.

Respondents: 373 Students, 1 Information Technology Coordinator, 30 Teachers
ACCESS TO INTERNET BANDWIDTH

Overall, **IT COORDINATORS** say the school **HAS COMMITTED** to meeting the national standard for bandwidth.

The **NATIONAL STANDARD** for bandwidth for 2016 is at least 100 Kbps per student/staff connection.

The bandwidth per student in this school is **52** kbps. (Calculation based on data from NJTRAX Tech Readiness).

Overall, **SCHOOL ADMINISTRATORS** say this school has **SUFFICIENT** Internet bandwidth to meet learning needs of students.

ADJUSTMENTS DUE TO DIGITAL LEARNING LOAD

The **IT COORDINATORS** **REGULARLY ADJUST** traffic and/or network configurations based on a review of the data on instructional and administrative traffic.

As digital learning needs increase, the **IT COORDINATORS** say network functions **HAVE NOT** had to be restricted (e.g., downloading or streaming video, uploading video, emailing large attachments, etc.).
Current Network Services/Functions

Figure: The percentage of information technology coordinators who indicated the school has these services/functions in place.

<table>
<thead>
<tr>
<th>Item</th>
<th>Percent of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>District as Internet Service Provider (ISP) for my school</td>
<td>100%</td>
</tr>
<tr>
<td>High speed Internet across integrated network</td>
<td>100%</td>
</tr>
<tr>
<td>Guest access to the network</td>
<td>100%</td>
</tr>
<tr>
<td>Cloud solutions and services</td>
<td>100%</td>
</tr>
<tr>
<td>Device management/digital asset solution</td>
<td>100%</td>
</tr>
<tr>
<td>Heat map of buildings for Wi-Fi planning</td>
<td>100%</td>
</tr>
<tr>
<td>Filtering system</td>
<td>100%</td>
</tr>
<tr>
<td>Leveraging E-Rate</td>
<td>100%</td>
</tr>
<tr>
<td>Automated system performance analysis</td>
<td>0%</td>
</tr>
<tr>
<td>Integrated infrastructure to meet demands district wide</td>
<td>100%</td>
</tr>
<tr>
<td>Software as service (SaaS) (Licensing a service that is hosted by a 3rd party)</td>
<td>100%</td>
</tr>
<tr>
<td>None of the above</td>
<td>0%</td>
</tr>
</tbody>
</table>

Respondents: 1 Information Technology Coordinator

Guiding Question 2: Network Maintenance
Is the network proactively maintained and updated? Are there established decision-making processes for establishing network-related policies?

NETWORK GOVERNANCE

QUESTION: Does the school have a governance structure in place that designates rules, procedures, and individual groups responsible for student and staff privacy, security, and online safety?

SCHOOL ADMINISTRATORS say **YES**

IT COORDINATORS say **YES**

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Element: Adequate and Responsive Support

The technical assistance provided within the schools is characterized by a positive service orientation, supporting the learning needs of students and educators. The maintenance, operations, and management of the systems is ongoing, with users notified when updates or regularly scheduled maintenance are scheduled. This system quickly and efficiently meets all staff and students' technical assistance needs in the schools. It is increasingly proactive in providing resources, coaching, and just-in-time instruction that prepares teachers and students to troubleshoot basic maintenance issues as they occur. Ultimately, this reduces the need for external support during the instructional day.

INSTRUCTIONAL AND TECHNICAL SUPPORT

53% of STUDENTS say that Internet problems are usually fixed within 24 hours.

On average, the SCHOOL ADMINISTRATORS say that the district/school PROVIDES instructional support to all staff on using technology to empower students to learn (e.g., coaching, vetted digital content, classroom management, collaborative exchanges, lesson design and modeling, etc.).

60% of TEACHERS say that Internet problems are usually fixed within 24 hours.

On average, the IT COORDINATORS say that STUDENTS ARE trained to handle simple technical assistance tasks.

Respondents: 373 Students, 1 Information Technology Coordinator, 30 Teachers, 11 School Administrators
Guiding Question 1: Emphasis on Student Learning Needs

Are the learning needs of students and educators adequately supported? How responsive is the technical assistance team? To what extent does the team have a customer service orientation?

Instructional Support

Figure: The percentage of school administrators and information technology coordinators who agree or strongly agree with the statement, “Our district/school provides instructional support to all staff on using technology to empower students to learn (e.g., coaching, vetted digital content, classroom management, collaborative exchanges, lesson design and modeling, etc.).”

Respondents: 1 Information Technology Coordinator, 11 School Administrators

Timeliness of Technical Support for Internet Issues

Figure: The percentage of teachers, students, and information technology coordinators who agree or strongly agree with the statement: “Problems with the Internet are usually fixed within 24 hours.”

Respondents: 1 Information Technology Coordinator, 30 Teachers

Timeliness of Technical Support for Hardware Issues

Figure: The percentage of teachers, students, and information technology coordinators who agree or strongly agree with the statement: “Reported problems with computers/devices are acknowledged within 24 hours.”

Respondents: 373 Students, 1 Information Technology Coordinator, 30 Teachers
Guiding Question 2: Staff and Student Training
To what extent are staff and students trained and given access required to handle simple maintenance and troubleshooting in order to reduce interruptions to instructional time?

Students Trained to Troubleshoot
Figure: The percentage of teachers and information technology coordinators who agree or strongly agree with the statement: "In our school students are trained to handle simple technical assistance tasks."

Staff Trained to Troubleshoot
Figure: The percentage of teachers and information technology coordinators who agree or strongly agree with the statement: "Staff are trained to handle simple technical issues."
Element: Formal Cycle for Review and Replacement

There is a formal cycle for review, upgrades, and/or replacement; teams continuously monitor technologies (e.g., software, hardware, and infrastructure) for needed upgrades, purchases, and, when called for, sunsetting of technologies. The latter is done in a timely, environmentally appropriate, and proactive manner.

Guiding Question 1: Replacement Cycle

Is there a formal process and/or cycle for hardware and software upgrades and/or replacements? Is the process environmentally sound? Is the cycle supported fiscally? Are there dedicated funds in the annual maintenance and operations budget?

STAYING CURRENT WITH TECHNOLOGY CYCLES

According to IT COORDINATORS:

This school **HAS** a well-maintained, up-to-date inventory of all devices, hardware, and peripherals.

Cycles for updating and replacing devices, hardware, and networks **ARE NOT** **FINANCIALLY SUPPORTED** in this school/district through line items in the annual maintenance and operations budget.

Processes for updating and replacing devices, hardware, and networks in this school **ARE ENVIRONMENTALLY RESPONSIBLE**.

Respondents: 1 Information Technology Coordinator

Staying Current with Technology Cycles

Figure: The percentage of school administrators and information technology coordinators who agree with the following statement: “Our district/school has a system for analyzing total cost of ownership (TCO) (i.e., direct and indirect costs) across the life cycle of the technology. This system is used to plan and to project upgrade and replacement cycles.”

<table>
<thead>
<tr>
<th></th>
<th>School Administrator(s)</th>
<th>Information Technology Coordinator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>9.1%</td>
<td>0%</td>
</tr>
<tr>
<td>Agree</td>
<td>18.2%</td>
<td>100%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>63.6%</td>
<td></td>
</tr>
<tr>
<td>Disagree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Guiding Question 2: Long-Range Plans
What are the long-range plans to upgrade existing network and hardware to meet the future educational demands?

Long-Range Plans to Meet Future Technology Needs
Figure: Information technology coordinators indicate their agreement with the following statements as representative of their school.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our district/school has a long-term technology plan that was collaboratively developed to meet current and future infrastructure demands.</td>
<td>100%</td>
</tr>
<tr>
<td>Our district/school has a long-term technology plan that adheres to industry standards and federal, state, and local laws regarding privacy, security and online safety in schools.</td>
<td>100%</td>
</tr>
</tbody>
</table>

Respondents: 1 Information Technology Coordinator
Data and Privacy

Data, privacy, and security are foundational elements of digital learning. A personalized, learner-centered environment uses technology to collect, analyze, organize, and access data to improve the effectiveness and efficiency of learning. The district ensures that sound data, privacy, and security policies, procedures, and practices are in place and adhered to at the district, school, classroom, and student levels. The district and school based policies and procedures on the guidelines from New Jersey statutes include the Family Educational Rights and Privacy Act (FERPA), the Child Internet Protection Act (CIPA), and the Children’s Online Privacy Protection Act (COPPA).

Gear Report: Readiness Digital Learning

Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)

Figure: Readiness for Digital in Data and Privacy

A school’s implementation rating represents the extent to which digital learning is implemented with students. The Digital Learning Implementation Rating is scored on a scale of 1-10 on a continuum from no/low implementation, to moderate, and then high implementation. Only 5 of the 8 gears are used to calculate the implementation score, since the other three gears do not directly impact students.
Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator

Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)

Figure: Digital Learning Implementation in Data and Privacy

<table>
<thead>
<tr>
<th>Category</th>
<th>No/Low level of implementation</th>
<th>Moderate level of implementation</th>
<th>High level of implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and Data Systems</td>
<td>0-3</td>
<td>4-7</td>
<td>8-10</td>
</tr>
<tr>
<td>Data Policies, Procedures, and Practices</td>
<td>2</td>
<td>6-7</td>
<td>8-10</td>
</tr>
<tr>
<td>Data-Informed Decision Making</td>
<td>4-7</td>
<td>6-7</td>
<td>8-10</td>
</tr>
<tr>
<td>Data Literate Education Professionals</td>
<td>6-7</td>
<td>6-7</td>
<td>8-10</td>
</tr>
</tbody>
</table>
Element: Data and Data Systems

To facilitate data-informed decision making, appropriate data are readily available, easily comprehensible, and useful for supporting the decision making processes. The data are available at any time, on any desktop, and from any location; made available through real-time access to data dashboards, data analytics, and data warehouses.

Guiding Question 1: Comprehensive Data System
To what extent has the school established a data system that integrates a student information system, data analytics, and an on-demand data reporting system with the classroom digital learning environment; where authorized users (e.g., students, teachers, administrators, parents/guardians) have access to diagnostic, summative, and formative data as well as student records?

Guiding Question 2: Integrated Data Dashboard for Educators
Do all educators have access to a comprehensive data dashboard that integrates student records with student diagnostic, formative, and summative data?
Element: Data Policies, Procedures, and Practices

Using the Family Educational Rights and Privacy Act (FERPA), the Child Internet Protection Act (CIPA), and the Children’s Online Privacy Protection Act (COPPA) as the basis, the district has up-to-date policies, procedures, and practices that address legal, ethical, and safety issues related to the privacy and security of data, and the usage of data, technology, and the Internet. Such policies, procedures, and practices address the collecting, storing, analyzing, reporting, exchanging, and archiving of data; as well as the usage of data, the Internet, and technology by all students and education professionals in the course of teaching, learning, communication, and the management of school services.

Guiding Question 1: Protocols for Data Collection, Retrieval, and Storage/Archiving

Has the school established a review process at the school that provides guidelines and review prior to any collecting, storing, analyzing, reporting, exchanging, and archiving of data by school personnel? Is the process evaluated and adjusted as needed?

Governance Regarding Data Collection

Figure: The extent to which school administrators and information technology coordinators agree that the district/school has established protocols and review processes prior to any collecting, storing, analyzing, reporting, exchanging, or archiving of data by district or school personnel.

- School Administrator(s)
 - Strongly Agree: 9.1%
 - Agree: 72.7%
 - Neither Agree nor Disagree: 18.2%

- Information Technology Coordinator(s)
 - Agree: 100%

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Guiding Question 2: Building Digital Citizenship in Students
To what extent are educators explicitly building digital citizenship with their students to ensure student safety, security, and privacy? Are students practicing good habits online that will keep them safe and secure, and will maintain their privacy? Does the school have an up-to-date plan in place for parental/guardian involvement in these efforts? To what extent does the plan provide materials and training to help parents/guardians work with their children’s academic achievement?

Emphasis on Digital Citizenship in School
Figure: The level of emphasis the teachers, school administrators, and educational technology coordinators say is placed on digital citizenship in this school.

- 66% of PARENTS/GUARDIANS say their student is learning digital citizenship, including online safety, security, and privacy.
- 77% of PARENTS/GUARDIANS say their student has been taught how to stay safe while online.
- 89% of PARENTS/GUARDIANS say their student is learning to use technology in ways that prepare him/her for the future in college and/or a career.
- Yet, 9% of STUDENTS say they sometimes share their passwords.

Respondents: 373 Students, 140 Parents/Guardians

Respondents: 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator
Guiding Question 3: Checklists and Guidelines to Protect Student Data and Ensure Privacy
Has the school established guidelines and a review process for teachers who are using apps, websites, blended learning and other uses that require student Internet access regarding data privacy and security for the possibility of student data generated and stored by third parties? (Implies teachers are familiar with statutes.)

Network Privacy and Security
Figure: The extent to which school administrators and information technology coordinators agree that network privacy and security procedures are monitored and strictly enforced in this school.

Security and Privacy Procedures
Figure: The extent to which the information technology coordinators agree that the following statements accurately describe their school’s procedures.
Teachers and Parents/Guardians Perceptions of Student Data Security

Figure: The extent to which teachers and parents/guardians agree that the following statements accurately describe the school’s procedures on privacy and security.

Respondents: 140 Parents/Guardians, 30 Teachers
Element: Data-Informed Decision Making

The use of formative and summative assessment data is part of the school culture, with administrators, teachers and, perhaps most importantly, all students actively using this data to improve learning. Assessment is not viewed as punitive, but rather as part of the teaching and learning process. There is an expectation in the school that data will inform all teaching and learning practices and decisions. This is modeled at all levels of the school system, from administration to the students themselves.

Guiding Question 1: High Expectations for Data-Informed Decision Making

Has the school established a data culture that sets high expectations for data-informed decisions by staff and students (e.g., expect decisions will be based on research, logic, and evidence; expect that data will be accurate and reliable; expect that research will be from reliable sources and cited, expect use of data from multiple sources, etc.)?

Educators' Uses of Data to Inform Practice

Most SCHOOL ADMINISTRATORS say that decision making in this school IS NOT EVIDENCE-BASED. Most TEACHERS say that decision making in their school IS NOT EVIDENCE-BASED.

Respondents: 30 Teachers, 11 School Administrators

Frequency of Teacher Uses of Data to Monitor Student Progress

Figure: The teachers' perceptions as to how often they use data to monitor their students' progress toward established learning goals.

Respondents: 30 Teachers
Guiding Question 2: Capacity of Students to Access and Use Data
Do students have the skills and motivation to access the data that are digitally accessible to them; and then use that data to monitor their own progress, adjusting their actions accordingly?

STUDENT USES FOR DATA

- **50% of STUDENTS** say they use grades and testing data to help them decide what to study next.
- Most **SCHOOL ADMINISTRATORS** say students **USE ASSESSMENT** and other data to track their own progress in achieving learning goals/standards.
- **90% of PARENTS/GUARDIANS** say, “My student uses data (i.e., grades, test results, feedback from teachers, etc.) to evaluate his/her own progress in learning.”
- Most **TEACHERS** say students **DO NOT USE ASSESSMENT** and other data to track their own progress in achieving learning goals/standards.

Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Element: Data Literate Education Professionals

Educators in the system are data literate, understanding the use and potential misuse of data in the teaching and learning process. They are informed about and adhere to district policies on data privacy and security. They also ensure that their students are knowledgeable and informed about data privacy and security, and that all students are good stewards of their own data. The school district provides professional learning opportunities in data literacy, and supports all education professionals technically and instructionally in their use of data for learning.

Guiding Question 1: Updates on Laws for Educators
Has the school provided educators with professional learning and periodic updates on federal and state laws on data, privacy, and security related to students?

TEACHER KNOWLEDGE ON DATA POLICY

SCHOOL ADMINISTRATORS say that the district OFFERS a series of professional learning opportunities on data literacy. Topics include legal and ethical responsibility in ensuring data accuracy, privacy, and security; data-informed decision-making; etc.

Respondents: 30 Teachers, 11 School Administrators

57% of TEACHERS say they are up-to-date on federal and state laws on privacy and security of student data.

Guiding Question 2: Educator Capacity to Use Data
Do educators have the capacity (access and skill) to use data from multiple sources to inform instructional, curricular, and assessment decisions?

Educator Capacity to Use Data to Inform Instruction

Figure: Teachers indicate whether they use data to target instruction, monitor progress, and inform their instruction.

Respondents: 30 Teachers
Community partnerships include the formal and informal connections with local and global communities. Such partnerships take the form of collaborative projects, establishing relationships that advance the school’s learning goals. Digital communications, online communities, social media, and digital learning environments often serve as connectors for these partnerships.

Gear Report: Readiness Digital Learning

Gloucester County Institute Of Technology (10/03/2016 - 10/11/2016)

Figure: Readiness for Digital in Community Partnerships

A school’s implementation rating represents the extent to which digital learning is implemented with students. The Digital Learning Implementation Rating is scored on a scale of 1-10 on a continuum from no/low implementation, to moderate, and then high implementation. Only 5 of the 8 gears are used to calculate the implementation score, since the other three gears do not directly impact students.
Respondents: 373 Students, 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Information Technology Coordinator, 1 Educational Technology Coordinator

Figure: Digital Learning Implementation in Community Partnerships

Local Community Engagement and Outreach	3.5
Global and Cultural Awareness	3.6
Digital Learning Environments Serve as Connectors to Local and Global Communities	3.3
Parental/Guardian Communication and Engagement	6.9
District and School Brand	7.9

No/Low level of implementation | Moderate level of implementation | High level of implementation
0-3 | 4-7 | 8-10
Element: Local Community Engagement and Outreach

The school serves as a hub of the local community. As such, it actively involves the community in achieving its learning goals, reaching out to the community to (1) extend learning into community centers, libraries, museums, and other public spaces; (2) bring relevance to curricula through partnerships that take the shape of apprenticeships, community service, authentic projects, and the use of community-based experts and resources, etc.; (3) implement community-based exhibitions, reviews, critiques, and celebrations of student work; and (4) coordinate afterschool programs, including collaboration with the school and students' teachers. The result is a school culture of collaboration, innovation, and empowerment.

Guiding Question 1: Community Connections that Bring Relevance to Student Learning

To what extent does the school provide opportunities for students to bring relevance to learning and/or the curriculum through community connections?

School as Hub of Community

School Administrators Report:

“Our school’s implementation of activities that enable us to serve as a hub of the community and actively involve the community in achieving the school’s learning goals is at MODERATELY IMPLEMENTED.

Respondents: 11 School Administrators

Students Interact Online With Local Community

Figure: Percentage of students who report on the frequency of their interactions online with local community members as part of class projects.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every day or almost every day</td>
<td>5.4%</td>
</tr>
<tr>
<td>A few times a week</td>
<td>15%</td>
</tr>
<tr>
<td>Once a month</td>
<td>15%</td>
</tr>
<tr>
<td>Rarely</td>
<td>23.1%</td>
</tr>
<tr>
<td>Never</td>
<td>41.6%</td>
</tr>
</tbody>
</table>

Respondents: 373 Students
Authentic Learning Through Interactions With Local Community

Figure: Percentage of teachers and parents/guardians reporting on the extent to which they agree with statements about how their school is affording students the opportunity to interact online with local experts in authentic learning situations.

<table>
<thead>
<tr>
<th>Opinion</th>
<th>Teachers</th>
<th>Parents/Guardians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>8.7%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Agree</td>
<td>43.3%</td>
<td>35%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>33.3%</td>
<td>36.4%</td>
</tr>
<tr>
<td>Disagree</td>
<td>16.7%</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

Respondents: 140 Parents/Guardians, 30 Teachers

Guiding Question 2: Out-of-School Programs

To what extent does the school provide opportunities for students to engage in out-of-school learning programs, informal learning, and extended learning opportunities after school that involve the community?

Students Online Through Community Locations

Figure: Percentage of school administrators and parents/guardians who agree that students from their school get online through locations in the community, (e.g., community centers, museums, restaurants, coffee shops, libraries, etc.).

<table>
<thead>
<tr>
<th>Opinion</th>
<th>School Administrator(s)</th>
<th>Parents/Guardians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>9.1%</td>
<td>9.3%</td>
</tr>
<tr>
<td>Agree</td>
<td>27.3%</td>
<td>23.6%</td>
</tr>
<tr>
<td>Neither Agree nor Disagree</td>
<td>45.5%</td>
<td>19.3%</td>
</tr>
<tr>
<td>Disagree</td>
<td>18.2%</td>
<td>33.6%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td></td>
<td>14.3%</td>
</tr>
</tbody>
</table>

Respondents: 140 Parents/Guardians, 11 School Administrators
Element: Global and Cultural Awareness

The community partnerships extend and deepen all students’ knowledge, understanding, and appreciation of cultures and communities other than their own. Digital networks enable all students and education professionals to connect, interact, and collaborate with other students, experts, and organizations from outside of their locale. The school builds the capacity of all students to recognize and value diversity, enabling them to participate successfully in community partnerships online and face-to-face.

Guiding Question 1: Student Interactions with Community and Cultures that Facilitate Appreciation of Diversity

To what extent do all students have the opportunity to connect and interact in social and professional contexts that reflect both peer-group and adult activities within the other cultures and communities? Are the students’ interactions with peers or members of other communities and cultures orchestrated to use appropriate etiquette in verbal and non-verbal communications, as it helps students recognize, appreciate, learn about, and celebrate diversity?

LEARNING FROM NEW CULTURES AND COMMUNITIES

Question: Do students in this school have opportunities to gain new appreciations, knowledge, and understandings about cultures and communities other than their own through online communications and digital projects?

50% of PARENTS/GUARDIANS say YES, their student is afforded these opportunities.

27% of TEACHERS say YES, students in their classrooms are afforded such opportunities.

SCHOOL ADMINISTRATORS AGREE that students in this school are afforded such opportunities.

Respondents: 140 Parents/Guardians, 30 Teachers, 11 School Administrators
Guiding Question 2: Students Develop Skills to Interact Online With Other Cultures and Communities

Do all students leave the school with the skills necessary to interact successfully with other communities and cultures online, in meaningful ways connected to the curricular efforts?

Students Connect with Other Cultures and Communities

Figure: Percentage of students who report on the frequencies of their connections online with students from other cultures and communities as a part of class projects.

![Frequency of Connections](chart)

Respondents: 373 Students

Opportunity to Interact Online with Experts Outside the Local Community

Figure: Percentage of teachers and parents/guardians who agree that students in their school are afforded the opportunity to interact online with experts outside the local community, in authentic learning situations.

![Opportunity to Interact](chart)

Respondents: 140 Parents/Guardians, 30 Teachers
Element: Digital Learning Environments Serve as Connectors to Local and Global Communities

The school district has established a digital learning environment that offers all students access to e-communication, resource libraries, file exchanges, and Web tools; which facilitate interactions among peers and between teachers, parents/guardians, and all students in school and beyond. District leaders facilitate digital citizenship and student responsibility for the development and structure of online communities to ensure online safety and security. The school forms partnerships that promote affordable, community-based access to devices and the Internet for students.

Guiding Question 1: Digital Learning Environment Enables Students to Interact with Community

Has the school provided a digital learning environment for students that empowers them to interact ethically and appropriately with local and global communities?

MEMBERSHIPS TO GLOBAL EDUCATION NETWORKS

This district/school purchases memberships for approved global education networks where teachers can engage their students in projects with other schools locally and globally.

Respondents: 11 School Administrators

There are times when a school's filtering system can serve as a barrier to students' and teachers' access to communities outside the school. Take a look at what students and teachers say about your school on this topic.

INTERNET FILTERING SYSTEM

66% of STUDENTS say that the school's filtering system is too strict. It often blocks websites that they need for learning.

63% of TEACHERS say the school's filtering system is too strict. It often impedes instruction.

Respondents: 373 Students, 30 Teachers
The following chart describes a teachers recourse in your school when websites are blocked that interfere with or impede learning.

Teacher Recourse to Blocked Sites

Figure: Teachers report the options available to them when a website is blocked by the school Internet filter.

- **Teachers have the option to allow exceptions.**
 - 40% of respondents

- **Teachers can request exceptions, the response and resultant action is usually within 48 hours.**
 - 43.3% of respondents

- **Teachers can request exceptions, but the response and resultant action usually takes 48 hours or more.**
 - 10% of respondents

Respondents: 30 Teachers
Element: Parental/Guardian Communication and Engagement

The school engages parents/guardians and all students in home-to-school communications through a variety of venues. While this may include Internet-based solutions, it also includes options that do not depend on connectivity in the home.

Guiding Question 1: Parental/Guardian Involvement
To what extent does the school welcome parental/guardian involvement through such activities as conferences, digital updates, notices, and reports from the school; parent/guardian volunteers in classrooms or the library, use of social media, or providing expertise for student projects?

99% of PARENTS/GUARDIANS say they are able to communicate online with their student’s teachers.

90% of TEACHERS say they often communicate with parents/guardians online.

SCHOOL ADMINISTRATORS say they DO NOT COMMUNICATE with parents/guardians online.

ET COORDINATORS say that educators from this school DO NOT COMMUNICATE with parents/guardians online, through social media.

Respondents: 140 Parents/Guardians, 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator
Guiding Question 2: School/Community Accommodates Parental/Guardian Access Online and Offline

Are home-to-school communications, access to student records, and other interactions offered to parents/guardians on and offline? Do parents/guardians have options to use a variety of formats such as mail, website, and public announcement? Is the communication available in multiple languages? Do parents/guardians without online access in the home have community centers where they can use devices to access their child’s records?

DIGITAL ACCESS TO SCHOOL WEB RESOURCES

99% of PARENTS/GUARDIANS say they have access to their student's grades.

86% of PARENTS/GUARDIANS say they have access to their student's class websites.

100% of STUDENTS say their parents/guardians have access to their class websites.

84% of PARENTS/GUARDIANS say the district/school websites are parent/guardian-friendly, easily accessible, and transparent to navigate.

Respondents: 373 Students, 140 Parents/Guardians

Teacher Perspectives

Figure: The percentage of teachers who said that the following features are available to parents/guardians.

Respondents: 30 Teachers
Element: District and School Brand

Branding is defined as the marketing practice of creating a name, symbol, or design that identifies and differentiates a product from other products. It’s critical that schools develop a brand as well and that the brand is transparent to all members within the organization—they must all be telling the same story, one that they believe in and stand behind. During faculty gatherings, informal conversations, and various meetings the district and school must ensure that the brand is communicated to the entire team. If the brand is to be effectively communicated outside of the school, leaders must first ensure that the brand promise matches the brand experience—the most important component for our students. The possibilities for how schools/districts can tell their stories are endless. For schools, it has never been more important to communicate a brand. And, it has never been easier to bring a story to life through social media, technology, and connected communities. The time has come for educators, students, and families to use their voices, take control of their stories, and begin thinking about how school and district communities can brand their space.

Guiding Question 1: Single and Focused Brand Communicated Universally

Has there been a concerted effort on the part of the school to establish a brand? Does the school have a single brand that is communicated by all staff and students? To what extent does that effort involve educators, students, and families in telling their stories using technology and social media?

Story-Telling That Contributes to the Brand

Figure: The percentage of key stakeholder groups on the extent to which the school is engaged in story-telling with the community, which contributes to the district brand (reputation).

<table>
<thead>
<tr>
<th>stakeholder group</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Administrator(s)</td>
<td>36.4%</td>
<td>36.4%</td>
<td>18.2%</td>
<td>9.1%</td>
<td></td>
</tr>
<tr>
<td>Teachers</td>
<td>6.7%</td>
<td>36.7%</td>
<td>43.3%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Educational Technology Coordinator(s)</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator

THE PARENT/GUARDIAN PERSPECTIVE

96% of PARENTS/GUARDIANS say their student is getting a good education in this school.

Respondents: 140 Parents/Guardians
Technology and digital learning can increase professional learning opportunities by expanding local and global access to high-quality, ongoing, job-embedded opportunities for professional growth for teachers, administrators, and other education professionals. Such opportunities ultimately lead to improvements in student success and create broader understanding of the skills that comprise success in a digital age. Digital professional learning communities, peer-to-peer lesson sharing, and better use of data and formative assessment, combined with less emphasis on "sit and get" professional development sessions eliminate the confines of geography and time. These ever-increasing resources offer teachers and administrators vast new opportunities to collaborate, learn, share, and produce best practices with colleagues in school buildings across the country. Digital leaders establish this type of collaborative culture. They model and are transparent/guardian with their own learning. In addition, educators must be engaged in more collaborative, goal-oriented approaches for the evaluation of their own teaching to serve as a personal model for the experiences that they might bring to all students.
Element: Shared Ownership and Responsibility for Professional Growth

Teachers, administrators, and other education professionals are self-directed in their professional practices, using technology to optimize teaching and learning. They are actively taking responsibility for their own professional growth through professional learning networks (PLNs) and online communities of practice. Educators have 24/7 access to collaborative tools, professional learning resources, and digital environments connect them locally and globally. Professional development offered by the district and school encourages, facilitates, and often requires creating and maintaining professional networks both within and outside of the district and school, frequently leveraging the latest in social media and blended learning. Educators are taking advantage of the district's policies that honor and encourage personalization of professional learning for teachers, administrators and other education professionals. School leaders are modeling these new, technology-enabled professional learning.

Guiding Question 1: Educators Accountable for Own Learning?
Is the school empowering teachers, administrators, and other education professionals to take ownership of and be accountable for their own professional learning?

53% of TEACHERS agreed or strongly agreed that this district/school encourages shared ownership for their professional growth.

When SCHOOL ADMINISTRATORS were asked if this district/school encourages shared ownership of educators’ professional growth, they AGREED.

Respondents: 30 Teachers, 11 School Administrators
Guiding Question 2: Modeling Uses of Technology
Is the school modeling how technology can be used to support and share professional learning? For example, is the school explicitly teaching teachers to build professional learning networks (PLNs), learn through Twitter feeds, engage successfully in EdCamps?

Policies on Ways to Demonstrate Professional Growth
Figure: The percentage of teachers and school administrators who agree that the district/school supports self-directed, personalized professional learning by providing educators with multiple ways to demonstrate professional growth (i.e., documenting professional learning credit in ways other than seat time).

Modeling of Continuous, 21st Century Professional Growth
Figure: The percentage of teachers and administrators who agree that the district/school leadership team models continuous professional growth, in part through the use of various technologies, social media, and online communities of practice.
Element: 21st Century Skill Set

Educators expand their knowledge to acquire a 21st Century skill set applicable to their professional learning, their professional practices, and their classroom practices. Through participation in 21st Century professional learning, they become better critical thinkers, problem solvers, innovators, collaborators, and communicators, and they become more self-directed. The 21st Century skill set for education professionals should include: experience with online and blended learning; facility with technology in curriculum and instruction, with digital assessment, with informed use of data/data analytics; and the capacity to design appropriate units for all digital learners. School administrators create a school culture that requires teachers and other education professionals to apply these skills as they make informed decisions related to student-centered learning, teaching, and assessment. Professional learning around these skills includes an immersion into the learning sciences that addresses research-based pedagogies to leverage project based learning and authentic learning in situations that enable collaborative learning with colleagues. Along the way, educators master a variety of new, research-based instructional strategies to better engage all students in deeper learning and prepare them for college and beyond. These educators learn to create lessons and use instructional approaches that develop their students’ 21st Century skills. They will need to develop collaborative pedagogical models in a supportive culture that enables them to experience negative and positive outcomes in the facilitation of learning without penalties. In addition, they will need to develop classroom management strategies for all digital learners, create safe learning environment that allows students to expand their reach, while ensuring that equipment is being used appropriately and effectively. Integral to this skill set is the effective use of technology, digital tools, blended learning, digital content, and social media to advance their own learning, and to coach and mentor their students.
Guiding Question 1: Safe and Supportive Culture in Which to Build 21st Century Skills

Has the school developed a safe and supportive culture that encourages innovation, exploration and calculated risk taking, especially in the use of 21st Century Skills, encouraging a growth mindset?

CULTURE TO BUILD 21ST CENTURY SKILLS

- **43% of TEACHERS** say they are empowered to innovate and take professional calculated risks as they transform their classrooms into 21st Century learning environments.

- **91% of SCHOOL ADMINISTRATORS** agree that “Transitioning our school to 21st Century skills and digital learning must be a top priority if we are to graduate students ready for their futures.”

- **23% of TEACHERS** say there is moderate to full implementation of strategies to promote 21st Century skills/deeper learning outcomes integrated into the curriculum.

- Yet, **37% of TEACHERS** say that some district and/or school policies are barriers to implementing lessons that integrate 21st Century Skills.

Respondents: 30 Teachers, 11 School Administrators

Guiding Question 2: Educators Using 21st Century Skills

To what degree are staff using 21st Century skills in their professional practice with peers?

Educators Using 21st Century Skills in Their Professional Practice

Figure: The percentage of teachers and school administrators reporting on whether they connect online with professional colleagues about issues that are of relevance to their work.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td>6.7%</td>
<td>33.3%</td>
<td>36.7%</td>
<td>13.3%</td>
<td>10%</td>
</tr>
<tr>
<td>School Administrator(s)</td>
<td>27.3%</td>
<td>45.5%</td>
<td>9.1%</td>
<td>9.1%</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers, 11 School Administrators
Guiding Question 3: Educators Competent in Building 21st Century Lessons/Units
How competent are staff in building lessons that effectively integrate 21st Century skills into learning? To what extent are they building lessons and units that embody authentic learning?

21ST CENTURY PROFESSIONAL PRACTICES

82% of SCHOOL ADMINISTRATORS agree that “In our school and district, staff members are expected to acquire knowledge and expertise with 21st Century skills and then integrate these skills (i.e., creativity, critical thinking, collaboration, self-direction, etc.) into all aspects of curriculum, instruction, and assessment.”

53% of TEACHERS place a moderate to high emphasis on embedding digital citizenship into their lesson/unit plans.

Respondents: 30 Teachers, 11 School Administrators

THE FOUR C’S

97% of TEACHERS place a moderately high to high emphasis on embedding critical thinking and problem solving into their lesson/unit plans.

90% of TEACHERS place a moderately high to high emphasis on embedding collaboration into their lesson/unit plans.

97% of TEACHERS place a moderately high to high emphasis on embedding communication into their lesson/unit plans.

87% of TEACHERS place a moderately high to high emphasis on embedding creativity and innovation into their lesson/unit plans.

Respondents: 30 Teachers
Element: Diverse Opportunities for Professional Learning

Digital leaders model new types of professional learning and ensure that educators have access to (and the technology savvy necessary to leverage) professional development opportunities that are diverse, customizable and supported by the latest technologies. Such opportunities use research-based pedagogies and technology (e.g., social media, professional learning networks (PLNs), Twitter feeds, EdCamps, etc.). Professional learning is available anytime, anywhere in a variety of modes. New models of professional learning are supported through coherent district and school policies and practices.

Guiding Question 1: Educators Empowered by Technology to Personalize Learning
Are educators participating in the types of professional learning that empower them to personalize their learning? Has the school identified and developed teacher leaders in personalized, professional learning initiatives?

Respondents: 11 School Administrators

Empower Educators to Personalize Learning

When **ADMINISTRATORS** from this school were asked if they agreed with the statement to the right, their most frequent response was: **AGREED**.

“Our school (or district) is providing teachers professional learning opportunities that empower them to personalize learning for their students.”

Guiding Question 2: School Offers Broad Range of Technology-Supported Professional Development
Has the school researched, developed, modeled, and implemented a broad range of differentiated professional learning options that use technology and social media to enable personalized professional learning? Job embedded growth model.

Broad Spectrum of Professional Learning Offered by District/School

Figure: Teachers and school administrators reporting on the extent to which they agree that the district/school encourages, models, and provides opportunities for a broad spectrum of professional learning (e.g., face-to-face, webinars, social media, coaches, etc.).

Respondents: 30 Teachers, 11 School Administrators
Element: Broad-Based, Participative Evaluation

In order to promote goal-oriented, self-regulated professional behaviors, evaluation is participative (i.e., the educator who is the subject of evaluation is actively involved in goal-setting, collecting indicators of progress, and self-evaluative behaviors). Professional evaluation uses a broad set of indicators that includes student achievement, evidence of improved instructional practice, student engagement, and 21st Century skill attainment.

Guiding Question 1: Explicit Connection Between Digital Learning and Teacher Evaluation Framework

Are the criteria used in teacher and other staff evaluations aligned to the digital learning vision, e.g., student achievement, evidence of improved instructional practice based on research, student engagement, and 21st Century skill attainment? To what extent do the results from such analyses inform the setting of teachers’ professional learning goals, ensuring that the process is cyclical?

Guiding Question 2: Evaluation Process Recognizes Variability of Success that Results from Innovation

Is the school leadership team establishing a culture of trust, respect, and innovation, acknowledging that in such a culture, teacher evaluation must take into account the expected variability of success with lesson implementation as innovation occurs?

Teacher Evaluation Process Acknowledges Variability in Innovation

Figure: Teachers and school administrators reporting on the extent to which they agree that the school has a culture of trust, respect, and innovation that acknowledges that teacher evaluation must take into account the expected variability of success with lesson implementation as innovation occurs.

Respondents: 30 Teachers, 11 School Administrators
The transition to digital learning will require strategic short-term and long-term budgeting and leveraging of resources. All budgets at the district and the school levels should be aligned to the new vision, with consistent funding streams for both recurring and non-recurring costs to ensure sustainability. During the transition to digital learning, district and school leaders should strive for cost-savings and efficiencies through effective uses of technology. The financial model should include the metrics and processes to ensure not only sustainability, but also total cost of ownership and accountability for learning returns on investments.
Element: Efficiency and Cost Savings

Funding for digital learning leverages technologies that increase efficiency, cost savings and cost effectiveness. District and school leaders have strategies for calculating the total cost of ownership (TCO) for all technology resources. This involves a review of both direct cost (e.g., costs related to equipment, devices, Internet access, boxes, wires, etc.) and indirect costs (e.g., training, technical assistance, staff time, etc.).

Guiding Question 1: Uses Research or Pilots to Identify TCO

What actions has the school taken in conducting research or pilots to identify the direct and indirect total cost of ownership (TCO) associated with owning and using technology resources?

(TCO): DIRECT AND INDIRECT COSTS

SCHOOL ADMINISTRATORS were asked if they agreed with the statement below.

"Our district/school has a process in place to identify and summarize all the DIRECT AND INDIRECT COSTS associated with digital learning."

Their most frequent response about DIRECT COSTS, (i.e., acquisition and upgrades of technologies and networks, licenses, and bandwidth), was they NOT SURE.

Their most frequent response about INDIRECT COSTS, (i.e., costs of implementation, professional learning, technical support, and operations), was they NOT SURE.

Respondents: 11 School Administrators
Guiding Question 2: Documentation of Cost Savings from Technology

What steps has the school taken in documenting any cost savings, efficiencies, and effectiveness accomplished through the funding of the school’s technology, digital resources, and other associated costs (e.g., savings from transitioning from print to digital)?

Cost Savings from Innovative Uses of Technology

Table: The school’s cost savings the school administrator reports achieved through innovative uses of technology

<table>
<thead>
<tr>
<th>Item</th>
<th>Percent of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition from print to more digital, online resources.</td>
<td>36.4%</td>
</tr>
<tr>
<td>Bring Your Own Device (savings in device purchasing)</td>
<td>45.5%</td>
</tr>
<tr>
<td>Reimbursement for warranty repair work</td>
<td>9.1%</td>
</tr>
<tr>
<td>Capitalize on available E-Rate funding</td>
<td>18.2%</td>
</tr>
<tr>
<td>Transition to digital in business operations</td>
<td>27.3%</td>
</tr>
<tr>
<td>Online professional learning for educators</td>
<td>54.5%</td>
</tr>
<tr>
<td>Automated lighting and heating in all schools/district building</td>
<td>18.2%</td>
</tr>
<tr>
<td>More efficient bus routes due to digital simulation</td>
<td>9.1%</td>
</tr>
<tr>
<td>Online courses offered for credit recovery and/or advancement</td>
<td>45.5%</td>
</tr>
<tr>
<td>Digital phone systems (reduce long distance costs, saves personnel costs-broadcasts messages, routing calls, etc.)</td>
<td>36.4%</td>
</tr>
<tr>
<td>Shared services or cooperative agreements</td>
<td>36.4%</td>
</tr>
</tbody>
</table>

Respondents: 11 School Administrators

Guiding Question 3: Parents/Guardians’ Engagement in the Budgeting Process

How are these benefits communicated to stakeholders, especially the shift to digital? How often is this process repeated? How does this process inform the exploration of new options for cost savings? In such explorations, to what extent are parents/guardians involved?

Parent/Guardian Engagement with Budgeting

53% of parents/guardians say they are comfortable with the district/school’s method of keeping them informed about the overall budget. When parents/guardians were asked to comment on the level of this school’s/district’s investment in technology, their most frequent response indicated that they found it to be appropriate to the need.

Respondents: 140 Parents/Guardians
Element: Alignment to District- and Building-Level Strategic and Tactical Plans

Priorities for budget and resources are clearly linked to district- and building-level strategic and tactical plans and to school improvement goals. All expenditures are justified as supportive of these plans. Innovative programs are funded conditionally upon their alignment to the district's vision and mission, thus ensuring sustainability, efficiency, and coherence with the vision.

Guiding Question 1: Prioritize Budgets Based on School Plans
To what extent does the school prioritize budget and resource decisions (including that for technology at district, school and classroom levels) based on the school's strategic and tactical plans for learning?

ACADEMICS DRIVE TECHNOLOGY BUDGETS

School administrators and information technology coordinators were asked if they agreed with the statement below:

"Our district/school's annual ACADEMIC PLANNING process INFORMS AND GUIDES THE BUDGETARY DECISIONS related to digital learning, technology, and infrastructure."

SCHOOL ADMINISTRATORS' most frequent response was that the academic process DOES INFORM and guide technology budgeting.

IT COORDINATORS' most frequent response was that it MAY NOT INFORM and guide budgetary decisions related to technology.

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Guiding Question 2: Identify and Budget for Indirect Costs Related to Technology
How does the school identify and budget indirect costs necessary to ensure optimal returns are recognized from the acquisition.

RETURN ON INVESTMENT

SCHOOL ADMINISTRATORS say that their district/school DOESN'T HAVE THE METRICS to calculate a learning return on the district investment in digital learning.

IT COORDINATORS report that their district/school DOESN'T have a system for analyzing TCO (i.e., direct and indirect costs) across the life cycle of the technology. This system is used to plan and project upgrade and replacement cycles.

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Element: Consistent Funding Streams

Budgets for digital learning programs and initiatives are part of the annual maintenance and operation budget for the district. Reliance on grant funding or temporary sources is minimal, and funding for digital learning is integrated into all budget areas where appropriate.

Guiding Question 1: School Achieves Fiscal Sustainability Over Life Cycle of Technologies
To what extent does the school understand the life cycles, maintenance requirements, and implementation costs of technology, and budget accordingly? Does the school explore options for funding technology, including not only the Maintenance and Operations (M&O) budget, but also alternatives such as grants, consortia purchasing, cost sharing, and crowdsourcing.

SUSTAINABILITY OVER LIFE CYCLE

Most IT COORDINATORS reported that this school MAY NOT HAVE REVIEWED past practices to determine where and how inconsistency in funding has negatively impacted digital learning practices and/or outcomes.

Most SCHOOL ADMINISTRATORS say that their school, when conducting short-term pilot projects (or other innovative initiatives), DOESN’T CREATE sustainability plans to support these initiatives long-term.

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Technology Funding Sources

Table: The school administrators’ identification of funding sources for this school

<table>
<thead>
<tr>
<th>Item</th>
<th>Percent of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal grants</td>
<td>45.5%</td>
</tr>
<tr>
<td>E-Rate</td>
<td>18.2%</td>
</tr>
<tr>
<td>State grants</td>
<td>36.4%</td>
</tr>
<tr>
<td>Foundation grants</td>
<td>9.1%</td>
</tr>
<tr>
<td>Parent/Guardian Teacher Organization (PTO) grants</td>
<td>27.3%</td>
</tr>
<tr>
<td>Crowdsourcing (e.g., Kickstarter)</td>
<td>0%</td>
</tr>
<tr>
<td>Special levies</td>
<td>0%</td>
</tr>
<tr>
<td>Community fundraising</td>
<td>18.2%</td>
</tr>
<tr>
<td>Gifts from patrons</td>
<td>9.1%</td>
</tr>
<tr>
<td>Consortia purchasing</td>
<td>18.2%</td>
</tr>
<tr>
<td>Cost sharing</td>
<td>45.5%</td>
</tr>
<tr>
<td>Tax levy</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Respondents: 11 School Administrators

Guiding Question 2: Funding Technology Refresh Cycle

How fully does the school fund a technology refresh plan?

FUNDING THE REFRESH CYCLE

Most **IT COORDINATORS** say the school's processes for updating and replacing devices, hardware, and networks **ARE ENVIRONMENTALLY RESPONSIBLE.**

When **IT COORDINATORS** were asked about refresh cycles, their most frequent answer was: *"Cycles for updating and replacing devices, hardware, and networks **ARE NOT FINANCIALLY SUPPORTED** through line items in the annual maintenance and operations budget.*

Respondents: 1 Information Technology Coordinator
Element: Learning Return on Investment

All metrics for review of budget priorities are based on their demonstrated relationship to student learning goals. The school calculates its learning return on investment.

Guiding Question 1: School Uses Zero-Based Budgeting
To what extent does the school use zero-based budgeting as part of a transformational budgeting process, where an item must be linked to a district/school strategic plan or learning goal in order to be included in the budget?

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Guiding Question 2: School Measures ROI Using TCO
To what extent does the school track TCO (i.e., the direct and indirect costs of the technology)? To what degree does the school’s TCO include direct costs such as purchase, lease, and licensing prices for equipment, Internet access, boxes, wires, and digital resources, as well as indirect costs such as staff time, technical assistance, insurance, and training required.

How does the school calculate its learning return on investment? (i.e., gauging gains in student learning in return for TCO investment)? What is that return either for specific programs and/or for the whole school?

Overall, SCHOOL ADMINISTRATORS report that a significant positive learning return on the district/school’s investment in digital learning HAS NOT BEEN DOCUMENTED by our district/school.

The most frequent response by IT COORDINATORS, when asked about a learning return on investment, was that a significant positive learning return on the district/school’s investment in digital learning HAS NOT BEEN DOCUMENTED by the district/school.

Respondents: 1 Information Technology Coordinator, 11 School Administrators
Future Ready is a systemic planning framework around the effective use of and access to technology and digital learning to achieve the goal of “career and college readiness” for all students. While the seven interdependent Future Ready Gears provides a roadmap toward digital learning, success within a district is depended on innovative leadership at all levels. First and foremost, leaders within a district must be empowered to think and act innovatively, they must believe in the district’s shared, forward-thinking vision for deeper learning through effective uses of digital, 21st Century technologies. Critical to their success will be a culture of innovation that builds the capacity of all students, teachers, administrators, parents, and community to work collaboratively toward that preferred future. The policy foundation that results must be coherent with that vision. Unleashed in a culture of vision and empowerment, leaders will have the flexibility and adaptability they require to prepare their students to thrive in the 21st Century. They will collaboratively hold one another accountable against established metrics, using continuous feedback loops to inform change management while leading from the middle.
Element: A Shared, Forward-Thinking Vision for Digital Learning

The district and school leaders recognize that to prepare their students to thrive in today’s connected, fast-paced society will require an education that engages all students in evidence-based, deeper learning through smart uses of technology and new pedagogies. The schools have engaged all students, teachers, administrators, parents, and the community in the envisioning of a transformed education system that personalizes learning for all students through the effective uses of technology. They have articulated and shared this vision internally and externally.

Guiding Question 1: Clear Expectations and Metrics of Success for Digital Learning

To what degree has the school set clear expectations as to what is expected of staff and students in implementing the vision for digital learning? Are there high expectations for evidence-based transformations to digital learning, both in and out of school? Is the vision for digital learning clearly articulated for various stakeholder groups? Has the school established metrics for measuring the progress the school is making in implementing and achieving the vision? Are these data used to inform continuous improvements?

Note: Such metrics might include measures of digital citizenship, student engagement, student self-direction, critical thinking, successful collaboration, and other 21st century skills. Measurement tools might include classroom observations, inclusion and use of lesson templates that refer to 21st Century skills, school walkthroughs documenting the range of technology uses, etc.

Clarity of Expectations for Digital Learning

Figure: Teachers, school administrators, and educational technology coordinators report on the extent to which they believe that the school has set clear expectations as to what is expected of staff and students in implementing the vision for digital learning.

<table>
<thead>
<tr>
<th>Role</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td>10%</td>
<td>20%</td>
<td>33.3%</td>
<td>23.3%</td>
<td>13.3%</td>
</tr>
<tr>
<td>Administrator(s)</td>
<td>18.2%</td>
<td></td>
<td>54.5%</td>
<td>9.1%</td>
<td>9.1%</td>
</tr>
<tr>
<td>Educational Technology Coor(s)</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metrics for Success

Figure: Teachers and school administrators report on the extent to which the school (or district) is using established metrics to track how technology is leveraged to accelerate learning.

<table>
<thead>
<tr>
<th>Role</th>
<th>No/Low Implementation</th>
<th>Low/Moderate Implementation</th>
<th>Moderate Implementation</th>
<th>Moderate/Full Implementation</th>
<th>Full Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td>36.7%</td>
<td>30%</td>
<td>16.7%</td>
<td>10%</td>
<td>6.7%</td>
</tr>
<tr>
<td>School Administrator(s)</td>
<td>18.2%</td>
<td>18.2%</td>
<td>36.4%</td>
<td>18.2%</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers, 11 School Administrators
Element: A Culture of Collaboration, Innovation, Capacity Building, and Empowerment

The District and school leadership teams have established a collaborative culture of innovation in which leaders at all levels are empowered to innovate. Within this culture, the school is being restructured to bring the vision to life. The capacity of leaders to innovate is maximized through a culture of trust and respect, providing leaders with the flexibility and adaptability they require to lead. This culture leads to sustainable change, informed by research and facilitated by digital leaders.

Guiding Question 1: Culture of Empowerment
To what extent have stakeholders committed to the vision for digital learning and its implementation in their schools and classrooms? Has the school established a culture of trust, respect, and shared commitment to digital learning and 21st Century skills, where autonomy, collaboration, and innovation are the norm?

Stakeholders Committed to the Vision

80% of TEACHERS report that they do, “see high value in digital learning for our students.”

The most frequent response by SCHOOL ADMINISTRATORS, when asked if they agree that “Transitioning their school to 21st Century skills and digital learning must be a top priority if students are to graduate ready for their futures,” was THEY STRONGLY AGREE.

63% of TEACHERS who report that they are committed to transitioning their classroom to digital learning (or have already made that transition).

98% of PARENTS/GUARDIANS support the inclusion of digital learning in their student’s classroom.

Culture of Trust, Respect, and Autonomy

Figure: Teachers and educational technology coordinators report on the extent to which they believe the school has implemented a culture in which leaders are informed, collaborative, and empowered to innovate.
Guiding Question 2: Flexibility Empowers Innovation
Has the school empowered leaders to innovate by providing them with flexibility, adaptability, and autonomy in achieving desired learning outcomes and/or concepts grounded in cognitive research?

Culture of Digital Innovation
Figure: Teachers, school administrators, and educational technology coordinators report on their agreement with the statement: “Our school has established a culture of digital innovation, where educators are empowered to deepen and extend student learning through the use of technology, digital content, and media.”

![Survey Results]

Respondents: 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator
Element: High Expectations for Evidence-Based Transformations to Digital Learning

Across the district, teachers, administrators, and students are expected to show progress toward the district vision for 21st Century digital learning. The district has established metrics for gauging such progress and is working across the district to monitor progress and to use evidence-based decision making to ensure that technologies are implemented in ways that advance the vision.

Guiding Question 1: Evidence-Based Transformations

To what extent have school leaders provided inspiration for staff to achieve evidence-based transformations to digital learning that empower students to learn? To what extent have these leaders worked with staff to set high expectations collaboratively with staff to achieve the vision? Have school leaders established and use metrics to gauge the progress their school is making toward digital learning? Note: Such metrics might include measures of digital citizenship, student engagement, student self-direction, critical thinking, successful collaboration, and other 21st century skills. Measurement tools might include classroom observations, inclusion and use of lesson templates that refer to 21st Century skills, school walkthroughs documenting the range of technology uses, etc.

When asked if they agreed with the following statement:

"In this school and district, staff members are expected to **ACQUIRE KNOWLEDGE AND EXPERTISE WITH 21st CENTURY SKILLS** and then integrate these skills (i.e., creativity, critical thinking, collaboration, self-direction, etc.) into all aspects of CURRICULUM, INSTRUCTION, AND ASSESSMENT.

SCHOOL ADMINISTRATORS' most frequent response was **"AGREED."**

Respondents: 11 School Administrators
Evidence-Based Transformations

Figure: School administrators and educational technology coordinators levels of agreement with the statement: “Our district/school uses applicable data to inform the implementation of the district’s/school’s vision for 21st Century skills.”

Guiding Question 2: Level of Implementation
To what extent are educators implementing the vision for digital learning? Are the schools making gains?

Gains Toward Digital Innovation
Figure: Teachers, school administrators, and educational technology coordinators levels of agreement with the statement: “Our school (or, for teachers, my classroom) is making gains in the transition to digital learning.”
Element: Transformative, Coherent Thinking, Planning, Policies, and Implementation

The district's forward-thinking vision is advanced through leaders' transformative thinking. Leaders have ensured that the district's policies are coherence with the philosophy underpinning the vision (e.g., personalizing professional learning for education professionals, just as they personalize learning for students). They have developed strategic plans that map potential pathways to the district's preferred future, and have created the tactical and financial plans and dedicated budget necessary for implementation. As they implement they monitor, adjust, build capacity, and incrementally improve.

Guiding Question 1: Coherence of Policies with the Acquisition of 21st Century Learning/Digital Learning

Have school leaders aligned school policies and procedures to the vision for 21st Century skills and digital learning? Have school leaders developed plans and established associated metrics to track progress toward the vision? Are data used to inform continuous improvements?

Strategies to Promote 21st Century Skills/Deeper Learning

Figure: Key stakeholders perceptions of the degree to which strategies to promote 21st Century skills/deeper learning outcomes are integrated into curriculum and instruction are being implemented.

<table>
<thead>
<tr>
<th></th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td>10%</td>
<td>13.3%</td>
<td>43.3%</td>
<td>26.7%</td>
<td>6.7%</td>
</tr>
<tr>
<td>School Administrator(s)</td>
<td>9.1%</td>
<td>9.1%</td>
<td>27.3%</td>
<td>54.5%</td>
<td></td>
</tr>
<tr>
<td>Educational Technology Coordinator(s)</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Respondents: 30 Teachers, 11 School Administrators, 1 Educational Technology Coordinator
Strategies to Promote 21st Century Skills/Deeper Learning

Figure: Teachers’ perceptions of the emphasis the school is placing on 21st Century skills/deeper learning.

Guiding Question 2: Capacity Building
To what extent do school leaders develop the capacity of staff to monitor and attain these expectations?

Capacity Building for Redesigning Lessons – Teacher Perspective
Figure: Teacher perspectives on the extent to which the school provides them support, time and resources to redesign lessons for the 21st century.
Scale: 1=Inadequate and 5 = Fully adequate.

Capacity Building for Redesigning Lessons – Administrator Perspective
Figure: Administrator perspectives on the extent to which the school provides them support, time and resources to redesign lessons for the 21st century.
Scale: 1=Inadequate and 5 = Fully adequate.
Capacity Building for Redesigning Learning Environments – Teacher Perspective

Figure: Teacher perspectives on the extent to which the school provides them support, time and resources to redesign learning environments for the 21st Century.

Scale: 1=Inadequate and 5 = Fully adequate.

Respondents: 30 Teachers

Capacity Building for Redesigning Learning Environments – Administrator Perspective

Figure: Administrator perspectives on the extent to which the school provides them support, time and resources to redesign learning environments for the 21st Century.

Scale: 1=Inadequate and 5 = Fully adequate.

Respondents: 11 School Administrators
47% of TEACHERS say that STUDENTS IN THIS SCHOOL HAVE A SIGNIFICANT ROLE TO PLAY in determining key aspects of their learning (e.g., what essential questions they investigate, how they use technology to learn, when they learn, with whom they learn, and when their projects are complete).

SCHOOL ADMINISTRATORS most frequently responded, "I AGREED, when asked if this school is providing teachers professional learning opportunities that EMPOWER THEM TO PERSONALIZE LEARNING FOR THEIR STUDENTS.

30% of TEACHERS say the school's DIGITAL LEARNING ENVIRONMENTS AND DIGITAL CONTENT ARE ACCESSIBLE TO AUTHORIZED STUDENTS 24/7.

Most SCHOOL ADMINISTRATORS AGREED that this district/school provides instructional support to all staff on using TECHNOLOGY TO EMPOWER STUDENTS TO LEARN (e.g., coaching, vetted digital content, classroom management, collaborative exchanges, lesson design and modeling, etc.).

Most SCHOOL ADMINISTRATORS say, "Our school (or district) IS NOT USING ESTABLISHED METRICS to track how technology is leveraged to accelerate learning."

When SCHOOL ADMINISTRATORS were asked if this school had equitable access to up-to-date devices that allow all students to communicate, create, and collaborate effectively, their most frequent response was NO.